On a stochastic non-autonomous discrete population equation

被引:0
|
作者
Yang, Yi [1 ]
机构
[1] Department of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing, 401331, China
关键词
D O I
10.4156/AISS.vol4.issue17.48
中图分类号
学科分类号
摘要
引用
收藏
页码:417 / 426
相关论文
共 50 条
  • [31] A stochastic perturbation theory for non-autonomous systems
    Moon, W.
    Wettlaufer, J. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [32] Uniform random attractors for a non-autonomous stochastic strongly damped wave equation on RN
    Li, Yanjiao
    Li, Bowen
    Li, Xiaojun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [33] Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise
    Krause, Andrew
    Lewis, Michael
    Wang, Bixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 365 - 376
  • [34] RANDOM ATTRACTOR FOR NON-AUTONOMOUS STOCHASTIC STRONGLY DAMPED WAVE EQUATION ON UNBOUNDED DOMAINS
    Wang, Zhaojuan
    Zhou, Shengfan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (03): : 363 - 387
  • [35] Multi-condition of stability for nonlinear stochastic non-autonomous delay differential equation
    Shaikhet, Leonid
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2018, 5 (03): : 337 - 351
  • [36] UPPER SEMICONTINUITY OF RANDOM ATTRACTORS FOR THE STOCHASTIC NON-AUTONOMOUS SUSPENSION BRIDGE EQUATION WITH MEMORY
    Xu, Ling
    Huang, Jianhua
    Ma, Qiaozhen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (11): : 5959 - 5979
  • [37] Approximate controllability of a non-autonomous differential equation
    Indira Mishra
    Madhukant Sharma
    Proceedings - Mathematical Sciences, 2018, 128
  • [38] Approximate controllability of a non-autonomous differential equation
    Mishra, Indira
    Sharma, Madhukant
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (03):
  • [39] NOTE ON A CERTAIN NON-AUTONOMOUS DIFFERENTIAL EQUATION
    REISSIG, R
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1970, 48 (05): : 484 - &
  • [40] LONGTIME BEHAVIOR OF A NON-AUTONOMOUS BEAM EQUATION
    Ren, Yonghua
    Zhang, Jianwen
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (03): : 135 - 146