Mixed-Chalcogen 2D Silver Phenylchalcogenides (AgE1-x E x Ph; E = S, Se, Te)

被引:0
|
作者
Lee, Woo Seok [1 ,2 ]
Cho, Yeongsu [1 ]
Paritmongkol, Watcharaphol [1 ,3 ]
Sakurada, Tomoaki [1 ]
Ha, Seung Kyun [1 ]
Kulik, Heather J. [1 ,3 ]
Tisdale, William A. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国能源部;
关键词
mithrene; two-dimensional; metal organochalcogenolate; semiconductor; alloy; thin film; exciton; TOTAL-ENERGY CALCULATIONS; BROAD-BAND EMISSION; LIGAND-EXCHANGE; METAL; SEMICONDUCTORS; ORIGINS;
D O I
10.1021/acsnano.4c15118
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Alloying is a powerful strategy for tuning the electronic band structure and optical properties of semiconductors. Here, we investigate the thermodynamic stability and excitonic properties of mixed-chalcogen alloys of two-dimensional (2D) hybrid organic-inorganic silver phenylchalcogenides (AgEPh; E = S, Se, Te). Using a variety of structural and optical characterization techniques, we demonstrate that the AgSePh-AgTePh system forms homogeneous alloys (AgSe1-x Te x Ph, 0 <= x <= 1) across all compositions, whereas the AgSPh-AgSePh and AgSPh-AgTePh systems exhibit distinct miscibility gaps. Density functional theory calculations reveal that chalcogen mixing is energetically unfavorable in all cases but comparable in magnitude to the ideal entropy of mixing at room temperature. Because AgSePh and AgTePh have the same crystal structure (which is different from AgSPh), alloying is predicted to be thermodynamically preferred over phase separation in the case of AgSePh-AgTePh, whereas phase separation is predicted to be more favorable than alloying for both the AgSPh-AgSePh and AgSPh-AgTePh systems, in agreement with experimental observations. Homogeneous AgSe1-x Te x Ph alloys exhibit continuously tunable excitonic absorption resonances in the ultraviolet-visible range, while the emission spectrum reveals competition between exciton delocalization (characteristic of AgSePh) and localization behavior (characteristic of AgTePh). Overall, these observations provide insight into the thermodynamics of 2D silver phenylchalcogenides and the effect of lattice composition on electron-phonon interactions in 2D hybrid organic-inorganic semiconductors.
引用
收藏
页码:35066 / 35074
页数:9
相关论文
共 50 条
  • [41] Remarkable intrinsic ZT in the 2D PtX2(X = O, S, Se, Te) monolayers at room temperature
    Zhang, Jun
    Xie, Yiqun
    Hu, Yibin
    Shao, Hezhu
    APPLIED SURFACE SCIENCE, 2020, 532
  • [42] Computational Insight into the Nature and Strength of the π-Hole Type Chalcogen•••Chalcogen Interactions in the XO2•••CH3YCH3 Complexes (X = S, Se, Te; Y = O, S, Se, Te)
    Lei, Fengying
    Liu, Qingyu
    Zhong, Yeshuang
    Cui, Xinai
    Yu, Jie
    Hu, Zuquan
    Feng, Gang
    Zeng, Zhu
    Lu, Tao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [43] Electrically tunable bandgaps for g-ZnO/ZnX (X = S, Se, Te) 2D semiconductor bilayers
    Lin, Che-Min
    Chang, Chun-Fu
    Hsieh, Wan-Chen
    Chang, Ching-Wen
    Zheng, Yu-yuan
    Yeh, Sung-Wei
    Su, Chun-Jung
    Lin, Yu-Chiao
    Yu, Yu-Hsuan
    Chen, Chien-Wei
    Kei, Chi-Chung
    Liao, Chih-Hsiung
    Huang, Kung-Shiuh
    Huang, Kuan-Tsae
    Chen, Di
    Chu, Wei-Kan
    Tu, Li-Wei
    Wadekar, Paritosh V.
    Leung, Tsan-Chuen
    Seo, Hye-Won
    Liaw, Bor-Yann
    Chen, Quark Yungsung
    VACUUM, 2021, 192
  • [44] Electrically tunable bandgaps for g-ZnO/ZnX (X = S, Se, Te) 2D semiconductor bilayers
    Lin, Che-Min
    Chang, Chun-Fu
    Hsieh, Wan-Chen
    Chang, Ching-Wen
    Zheng, Y.
    Yeh, Sung-Wei
    Su, Chun-Jung
    Lin, Yu-Chiao
    Yu, Yu-Hsuan
    Chen, Chien-Wei
    Kei, Chi-Chung
    Liao, Chih-Hsiung
    Huang, K.S.
    Huang, K.T.
    Chen, Di
    Chu, Wei-Kan
    Tu, Li-Wei
    Wadekar, Paritosh V.
    Leung, Tsan-Chuen
    Seo, Hye-Won
    Liaw, Bor-Yann
    Chen, Quark Yungsung
    Vacuum, 2021, 192
  • [45] Deriving 2D M2X3 (M = Mo, W, X = S, Se) by periodic assembly of chalcogen vacancy lines in their MX2 counterparts
    Wang, Xiaowei
    Guan, Xiaoxiao
    Ren, Xibiao
    Liu, Tian
    Huang, Wei
    Cao, Juexian
    Jin, Chuanhong
    NANOSCALE, 2020, 12 (15) : 8285 - 8293
  • [46] Multinuclear magnetic resonance studies on intramolecular chalcogen-tin coordination in compounds of the type Me2Sn(X)-CH2CH2P(E)Ph2 (X = Halogen, E = Chalcogen)
    Mitchell, T. N.
    Godry, B.
    Journal of Organometallic Chemistry, 490 (1-2):
  • [47] Synthetic applications of (Me3SiNSN)2E (E = S, Se) in chalcogen-nitrogen chemistry:: Formation and structural characterization of Cl2TeESN2 (E = S, Se) and [PPh4]2[Pd2(μ-Se2N2S)X4] (X = Cl, Br)
    Konu, J
    Ahlgrén, M
    Aucott, SM
    Chivers, T
    Dale, SH
    Elsegood, MRJ
    Holmes, KE
    James, SLM
    Kelly, PF
    Laitinen, RS
    INORGANIC CHEMISTRY, 2005, 44 (14) : 4992 - 5000
  • [48] Electron diffraction study of TlGa1-x Ge x X2 (X = S, Se, Te) nanofilms
    Alekperov, E. Sh
    INORGANIC MATERIALS, 2012, 48 (02) : 123 - 127
  • [49] The preparation of 1,2-Te2E5 (E = S, Se) from tellurium chloride Te2Cl2
    Pietikainen, JJ
    Laitinen, RS
    PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 1997, 124 : 453 - 456
  • [50] Reactivity of small organic molecules with the iron-chalcogen compounds Fe-2(CO)(6)(mu-E(2)) [E=S, Se, Te]
    Trivedi, R
    Manimaran, B
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 55 - INOR