Multimodal Machine Learning for Materials Science: Discovery of Novel Li-Ion Solid Electrolytes

被引:0
|
作者
Wang, Shuo [1 ,2 ]
Gong, Sheng [2 ]
Boeger, Thorben [4 ,5 ]
Newnham, Jon A. [4 ]
Vivona, Daniele [3 ]
Sokseiha, Muy [1 ,2 ]
Gordiz, Kiarash [1 ,3 ]
Aggarwal, Abhishek [1 ,2 ]
Zhu, Taishan [2 ]
Zeier, Wolfgang G. [4 ,6 ]
Grossman, Jeffrey C. [1 ,2 ]
Shao-Horn, Yang [1 ,2 ,3 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] Univ Munster, Inst Inorgan & Analyt Chem, D-48149 Munster, Germany
[5] Univ Munster, Int Grad Sch Battery Chem Characterizat Anal Recyc, D-48149 Munster, Germany
[6] Forschungszentrum Julich, Helmholtz Inst Munster IEK 12, Inst Energy & Climate Res, D-52425 Julich, Germany
关键词
CONDUCTORS; INSIGHTS; DESIGN;
D O I
10.1021/acs.chemmater.4c02257
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The widespread adoption of multimodal machine learning (ML) models such as GPT-4 and Gemini has revolutionized various research domains, including computer vision and natural language processing. However, their implementation in materials informatics remains underexplored, despite the availability of diverse modalities in materials data. This study introduces an approach to multimodal machine learning in materials science via composition-structure bimodal learning and proposes the COmposition-Structure Bimodal Network (COSNet). The COSNet demonstrates significantly improved performance in predicting a variety of material properties, such as lithium-ion conductivity in solid electrolytes, band gap, refractive index, and formation enthalpy. This research highlights the critical importance of representation alignment in multimodal learning for materials science, enabling knowledge transfer between modalities and avoiding biased or divergent learning. Furthermore, we present an integrated paradigm that combines multimodal learning, transfer learning, ensemble methods, and atomic simulation to facilitate the discovery of novel superionic conductors.
引用
收藏
页码:11541 / 11550
页数:10
相关论文
共 50 条
  • [21] Polycarbonate-based solid polymer electrolytes for Li-ion batteries
    Sun, Bing
    Mindemark, Jonas
    Edstrom, Kristina
    Brandell, Daniel
    SOLID STATE IONICS, 2014, 262 : 738 - 742
  • [22] Molecular layer deposition of Li-ion conducting "Lithicone" solid electrolytes
    Kazyak, Eric
    Shin, Minjeong
    LePage, William S.
    Cho, Tae H.
    Dasgupta, Neil P.
    CHEMICAL COMMUNICATIONS, 2020, 56 (99) : 15537 - 15540
  • [23] Perspective electrolytes for Li-ion batteries
    Wieclawik, Justyna
    Chrobok, Anna
    PRZEMYSL CHEMICZNY, 2020, 99 (05): : 795 - 800
  • [24] Electrolytes for Li-ion transport - Review
    Marcinek, M.
    Syzdek, J.
    Marczewski, M.
    Piszcz, M.
    Niedzicki, L.
    Kalita, M.
    Plewa-Marczewska, A.
    Bitner, A.
    Wieczorek, P.
    Trzeciak, T.
    Kasprzyk, M.
    Lezak, P.
    Zukowska, Z.
    Zalewska, A.
    Wieczorek, W.
    SOLID STATE IONICS, 2015, 276 : 107 - 126
  • [25] Discovery of solid-state electrolytes for Na-ion batteries using machine learning
    Pereznieto, Santiago
    Jaafreh, Russlan
    Kim, Jung-gu
    Hamad, Kotiba
    MATERIALS LETTERS, 2023, 349
  • [26] Development of novel cathode materials for Li-ion batteries
    Popov, BN
    White, RE
    THIRTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, 1998, : 387 - 392
  • [27] Machine learning-accelerated discovery and design of electrode materials and electrolytes for lithium ion batteries
    Xu, Guangsheng
    Jiang, Mingxi
    Li, Jinliang
    Xuan, Xiaoyang
    Li, Jiabao
    Lu, Ting
    Pan, Likun
    ENERGY STORAGE MATERIALS, 2024, 72
  • [28] Unconstrained Machine Learning Screening for New Li-Ion Cathode Materials Enhanced by Class Balancing
    Dinic, Filip
    Voznyy, Oleksandr
    ADVANCED THEORY AND SIMULATIONS, 2023, 6 (06)
  • [29] Review of Garnet-Based Solid Electrolytes for Li-Ion Batteries (LIBs)
    Pravin Kodgire
    Brijesh Tripathi
    Prakash Chandra
    Journal of Electronic Materials, 2024, 53 : 2203 - 2228
  • [30] SiSe2 for Superior Sulfide Solid Electrolytes and Li-Ion Batteries
    Nam, Ki-Hun
    Ganesan, Vinoth
    Kim, Do-Hyeon
    Jeong, Sangmin
    Jeon, Ki-Joon
    Park, Cheol-Min
    ACS Applied Materials and Interfaces, 2024, 16 (01): : 643 - 654