Multimodal Machine Learning for Materials Science: Discovery of Novel Li-Ion Solid Electrolytes

被引:0
|
作者
Wang, Shuo [1 ,2 ]
Gong, Sheng [2 ]
Boeger, Thorben [4 ,5 ]
Newnham, Jon A. [4 ]
Vivona, Daniele [3 ]
Sokseiha, Muy [1 ,2 ]
Gordiz, Kiarash [1 ,3 ]
Aggarwal, Abhishek [1 ,2 ]
Zhu, Taishan [2 ]
Zeier, Wolfgang G. [4 ,6 ]
Grossman, Jeffrey C. [1 ,2 ]
Shao-Horn, Yang [1 ,2 ,3 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] Univ Munster, Inst Inorgan & Analyt Chem, D-48149 Munster, Germany
[5] Univ Munster, Int Grad Sch Battery Chem Characterizat Anal Recyc, D-48149 Munster, Germany
[6] Forschungszentrum Julich, Helmholtz Inst Munster IEK 12, Inst Energy & Climate Res, D-52425 Julich, Germany
关键词
CONDUCTORS; INSIGHTS; DESIGN;
D O I
10.1021/acs.chemmater.4c02257
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The widespread adoption of multimodal machine learning (ML) models such as GPT-4 and Gemini has revolutionized various research domains, including computer vision and natural language processing. However, their implementation in materials informatics remains underexplored, despite the availability of diverse modalities in materials data. This study introduces an approach to multimodal machine learning in materials science via composition-structure bimodal learning and proposes the COmposition-Structure Bimodal Network (COSNet). The COSNet demonstrates significantly improved performance in predicting a variety of material properties, such as lithium-ion conductivity in solid electrolytes, band gap, refractive index, and formation enthalpy. This research highlights the critical importance of representation alignment in multimodal learning for materials science, enabling knowledge transfer between modalities and avoiding biased or divergent learning. Furthermore, we present an integrated paradigm that combines multimodal learning, transfer learning, ensemble methods, and atomic simulation to facilitate the discovery of novel superionic conductors.
引用
收藏
页码:11541 / 11550
页数:10
相关论文
共 50 条
  • [1] Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials
    Sendek, Austin D.
    Cubuk, Ekin D.
    Antoniuk, Evan R.
    Cheon, Gowoon
    Cui, Yi
    Reed, Evan J.
    CHEMISTRY OF MATERIALS, 2019, 31 (02) : 342 - 352
  • [2] Solid electrolytes for Li-ion batteries via machine learning
    Pereznieto, Santiago
    Jaafreh, Russlan
    Kim, Jung-gu
    Hamad, Kotiba
    MATERIALS LETTERS, 2023, 337
  • [3] Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries
    Guo, Xingyu
    Wang, Zhenbin
    Yang, Ji-Hui
    Gong, Xin-Gao
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (17) : 10124 - 10136
  • [4] Discovery of Superionic Solid-State Electrolyte for Li-Ion Batteries via Machine Learning
    Kang, Seungpyo
    Kim, Minseon
    Min, Kyoungmin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (39): : 19335 - 19343
  • [5] Li-ion conduction mechanisms in solid electrolytes for solid state battery
    Santosh, K. C.
    Longo, Roberto C.
    Wang, Weichao
    Xiong, Ka
    Cho, Kyeongjae
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [6] Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies
    Ma, Cheng
    Chi, Miaofang
    FRONTIERS IN ENERGY RESEARCH, 2016, 4
  • [7] Improving Li-ion interfacial transport in hybrid solid electrolytes
    Ming Liu
    Shengnan Zhang
    Ernst R. H. van Eck
    Chao Wang
    Swapna Ganapathy
    Marnix Wagemaker
    Nature Nanotechnology, 2022, 17 : 959 - 967
  • [8] Perovskite-type Li-ion solid electrolytes: a review
    Lu, Jiayao
    Li, Yin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (08) : 9736 - 9754
  • [9] Enhancing Li-Ion Transport in Solid Electrolytes by Confined Water
    Li, Yutong
    Wang, Shitong
    Xiao, Zunqiu
    Leng, Jin
    Zhang, Zhongtai
    Gao, Tao
    Tang, Zilong
    SMALL, 2022, 18 (29)
  • [10] Improving Li-ion interfacial transport in hybrid solid electrolytes
    Liu, Ming
    Zhang, Shengnan
    van Eck, Ernst R. H.
    Wang, Chao
    Ganapathy, Swapna
    Wagemaker, Marnix
    NATURE NANOTECHNOLOGY, 2022, 17 (09) : 959 - +