Geometrical interpretation of critical exponents

被引:0
|
作者
Lima, Henrique A. [1 ]
Luis, Edwin E. Mozo [2 ]
Carrasco, Ismael S. S. [1 ]
Hansen, Alex [3 ]
Oliveira, Fernando A. [1 ,2 ]
机构
[1] Univ Brasilia, Inst Phys, Int Ctr Phys, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Fluminense, Inst Fis, Ave Litoranea S-N, BR-24210340 Niteroi, RJ, Brazil
[3] Norwegian Univ Sci & Technol, Dept Phys, PoreLab, NO-7491 Trondheim, Norway
关键词
FLUCTUATION-DISSIPATION-THEOREM; VIOLATION; CLUSTERS; DYNAMICS;
D O I
10.1103/PhysRevE.110.L062107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a hypothesis that the dynamics of equilibrium systems at criticality have their dynamics constricted to a fractal subspace. We relate the correlation fractal dimension associated with this subspace to the Fisher critical exponent controlling the singularity associated with the correlation function. This fractal subspace is different from that associated with the order parameter. We propose a relation between the correlation fractal dimension and the order parameter fractal dimension. The fractal subspace we identify has as a defining property that the correlation function is restored at the critical point by restricting the dynamics this way. We determine the correlation fractal dimension of the two-dimensional Ising model and validate it by computer simulations. We discuss growth models briefly in this context.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] CRITICAL EXPONENTS AND CRITICAL DIMENSIONS FOR POLYHARMONIC OPERATORS
    PUCCI, P
    SERRIN, J
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1990, 69 (01): : 55 - 83
  • [32] GEOMETRICAL INTERPRETATION OF HUNGARIAN METHOD
    SCHMID, HJ
    DISCRETE MATHEMATICS, 1978, 21 (03) : 297 - 308
  • [33] Geometrical Interpretation of Joint Diagonalization
    Akhavan, S.
    Esmaeili, S.
    Kamarei, M.
    Soltanian-Zadeh, H.
    2018 25TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2018 3RD INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2018, : 246 - 250
  • [34] GEOMETRICAL INTERPRETATION OF SCALING LAWS
    BENGUIGUI, L
    PHYSICA, 1973, 64 (01): : 189 - 201
  • [35] A GEOMETRICAL INTERPRETATION OF SCALE INVARIANCE
    FERRARA, S
    ROSSI, G
    LETTERE AL NUOVO CIMENTO, 1970, 4 (09): : 408 - &
  • [36] A GEOMETRICAL INTERPRETATION OF INVERSE PROBLEMS
    OLBERS, D
    OCEANIC CIRCULATION MODELS : COMBINING DATA AND DYNAMICS, 1989, 284 : 79 - 93
  • [37] A GEOMETRICAL INTERPRETATION OF THE RELAXATION METHOD
    BOTTEMA, O
    QUARTERLY OF APPLIED MATHEMATICS, 1950, 7 (04) : 422 - 423
  • [38] Geometrical interpretation of optical absorption
    Monzon, J. J.
    Barriuso, A. G.
    Sanchez-Soto, L. L.
    Montesinos-Amilibia, J. M.
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [39] Geometrical interpretation of the Schmidt decomposition
    Aravind, PK
    COHERENCE AND QUANTUM OPTICS VII, 1996, : 647 - 648
  • [40] A GEOMETRICAL INTERPRETATION OF KANE EQUATIONS
    LESSER, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 436 (1896): : 69 - 87