An efficient quantum circuit for block encoding a pairing Hamiltonian

被引:0
|
作者
Liu, Diyi [1 ]
Du, Weijie [2 ]
Lin, Lin [3 ,4 ]
Vary, James P. [2 ]
Yang, Chao [4 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN USA
[2] Iowa State Univ, Dept Phys, Ames, IA USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
[4] Lawrence Berkeley Natl Lab, Appl Math & Computat Res Div, Berkeley, CA 94720 USA
关键词
Block encoding; Quantum singular value transformation; Quantum signal processing; Pairing Hamiltonian; Quantum circuit;
D O I
10.1016/j.jocs.2024.102480
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an efficient quantum circuit for block encoding a pairing Hamiltonian often studied in nuclear physics. Our block encoding scheme does not require mapping the creation and annihilation operators to the Pauli operators and representing the Hamiltonian as a linear combination of unitaries. Instead, we show how to encode the Hamiltonian directly using controlled swap operations. We analyze the gate complexity of the block encoding circuit and show that it scales polynomially with respect to the number of qubits required to represent a quantum state associated with the pairing Hamiltonian. We also show how the block encoding circuit can be combined with the quantum singular value transformation to construct an efficient quantum circuit for approximating the density of states of a pairing Hamiltonian. The techniques presented can be extended to encode more general second-quantized Hamiltonians.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Efficient Data Encoding and Decoding for Quantum Computing
    Mahmud, Naveed
    Jeng, Mingyoung Joshua
    Nobel, Md. Alvir Islam
    Chaudhary, Manu
    Islam, S. M. Ishraq Ul
    Levy, David
    El-Araby, Esam
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 765 - 768
  • [32] A Compact and Efficient SAT Encoding for Quantum Circuits
    Wille, Robert
    Przigoda, Nils
    Drechsler, Rolf
    AFRICON, 2013, 2013, : 748 - 753
  • [33] Efficient quantum amplitude encoding of polynomial functions
    Gonzalez-Conde, Javier
    Watts, Thomas W.
    Rodriguez-Grasa, Pablo
    Sanz, Mikel
    QUANTUM, 2024, 8
  • [34] Limitations of quantum simulation examined by simulating a pairing hamiltonian using nuclear magnetic resonance
    Brown, Kenneth R.
    Clark, Robert J.
    Chuang, Isaac L.
    PHYSICAL REVIEW LETTERS, 2006, 97 (05)
  • [35] Circuit complexity of quantum access models for encoding classical data
    Zhang, Xiao-Ming
    Yuan, Xiao
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [36] Quantum circuit generation for amplitude encoding using a transformer decoder
    Daimon, Shunsuke
    Matsushita, Yu-ichiro
    PHYSICAL REVIEW APPLIED, 2024, 22 (04):
  • [37] Block-ZXZ synthesis of an arbitrary quantum circuit
    De Vos, A.
    De Baerdemacker, S.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [38] Approximate quantum circuit synthesis using block encodings
    Camps, Daan
    Van Beeumen, Rod
    PHYSICAL REVIEW A, 2020, 102 (05)
  • [39] An efficient logic extraction algorithm using partitioning and circuit encoding
    Huang, L
    Jiang, TY
    Jou, JY
    Huang, HL
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5, PROCEEDINGS, 2004, : 249 - 252
  • [40] A CLASS OF EFFICIENT QUANTUM INCREMENTER GATES FOR QUANTUM CIRCUIT SYNTHESIS
    Li, Xiaoyu
    Yang, Guowu
    Torres, Carlos Manuel, Jr.
    Zheng, Desheng
    Wang, Kang L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (01):