Effect of palladium core size on the activity and durability of Pt-Monolayer electrocatalysts for oxygen reduction reaction

被引:0
|
作者
Choi, Jiye [1 ,2 ]
Lee, Eunjik [1 ,3 ,4 ]
Woo, Seung-min [5 ]
Whang, Youngjoo [1 ]
Kwon, Yongmin [1 ]
Seo, Minho [5 ]
Cho, Eunae [2 ]
Park, Gu-Gon [1 ,3 ,4 ]
机构
[1] Korea Inst Energy Res KIER, Hydrogen Fuel Cell Lab, 152 Gajeong Ro, Daejeon 34129, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 305701, South Korea
[3] Chungnam Natl Univ, Grad Sch Energy Sci & Technol GEST, 99 Daehak Ro, Daejeon 34134, South Korea
[4] Univ Sci & Technol, Dept Energy Engn, 217 Gajeong Ro, Daejeon 34113, South Korea
[5] Pukyong Natl Univ, Dept Nanotechnol Engn, 45 Yongso Ro, Busan 48547, South Korea
基金
新加坡国家研究基金会;
关键词
Platinum; Palladium; Core-shell structure; Electrocatalyst; Oxygen reduction reaction; Fuel cells; TOTAL-ENERGY CALCULATIONS; SHELL NANOPARTICLES; ELECTROCHEMICAL STABILITY; PLATINUM; OXIDATION; MECHANISMS; CATALYSTS; METALS; STRAIN;
D O I
10.1016/j.apsusc.2025.162477
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pd-based core-shell catalysts coated with a Pt monolayer (ML) are promising catalysts in polymer electrolyte membrane fuel cells. However, the effect of Pd core-size on the performance of these electrocatalysts remains underexplored. Therefore, this study systematically investigated the effect of Pd core-size on the electrochemical activity and durability of Pt ML electrocatalysts. We synthesized Pd@Pt/C catalysts using a CO-assisted reduction method, and Pd core sizes were precisely controlled at 3.8 nm and 4.9 nm by adjusting the pH levels. Subsequently, a Pt ML was deposited through copper underpotential deposition, yielding conformal Pt layers on the Pd cores. Pd@Pt/C with the smaller Pd core (PdS@Pt/C) demonstrated superior initial oxygen reduction reaction activity. However, its electrochemical active surface area (ECSA) and mass activity (MA) (41.1 % and 48.5 %, respectively) substantially decreased after an accelerated stress test (AST) with 50 k cycles. This can be attributed to Pt-shell thickening and Pd leaching. In contrast, Pd@Pt/C with the larger Pd core (PdL@Pt/C) demonstrated superior durability, with minimal ECSA (33.8 %) and MA (25.6 %) losses and stable Pt-shell thickness. Based on the ab-initio approaches regarding oxygen adsorption energy and Pt dissolution, the activity and durability are enhanced as (i) the overall particle size increases, (ii) Pd core size increases, and (iii) the number of Pt layers on the Pd surface decreases. These findings highlight the pivotal role of the core size in optimizing the performance of core-shell catalysts, wherein larger cores enhance durability of the shell material by mitigating core leaching and maintaining shell integrity.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts
    YongMan Choi
    Kurian A. Kuttiyiel
    Joselito P. Labis
    Kotaro Sasaki
    Gu-Gon Park
    Tae-Hyun Yang
    Radoslav R. Adzic
    Topics in Catalysis, 2013, 56 : 1059 - 1064
  • [32] Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts
    Zhang, Yafeng
    Qin, Juan
    Leng, Deying
    Liu, Qianru
    Xu, Xiaoyan
    Yang, Bing
    Yin, Feng
    Journal of Power Sources, 2021, 485
  • [33] Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts
    Zhang, Yafeng
    Qin, Juan
    Leng, Deying
    Liu, Qianru
    Xu, Xiaoyan
    Yang, Bing
    Yin, Feng
    JOURNAL OF POWER SOURCES, 2021, 485
  • [34] Core-Shell Electrocatalysts for Oxygen Reduction Reaction
    Chang Qiao-Wan
    Xiao Fei
    Xu Yuan
    Shao Min-Hua
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (01) : 9 - 17
  • [35] Controlled synthesis of high metal-loading, Pt-based electrocatalysts with enhanced activity and durability toward oxygen reduction reaction
    Li, Shushuang
    Liu, Huiyuan
    Wang, Ying
    Xu, Wei
    Li, Jia
    Liu, Yuan
    Guo, Xinwen
    Song, Yujiang
    RSC ADVANCES, 2015, 5 (12): : 8787 - 8792
  • [36] Effect of Temperature on Oxygen Reduction Reaction Kinetics for Pd Core-Pt Shell Catalyst with Different Core Size
    Liu, Chen
    Uchiyama, Tomoki
    Yamamoto, Kentaro
    Watanabe, Toshiki
    Gao, Xiao
    Imai, Hideto
    Matsumoto, Masashi
    Sugawara, Seiho
    Shinohara, Kazuhiko
    Oshima, Koichiro
    Sakurai, Shigeki
    Uchimoto, Yoshiharu
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (01) : 810 - 818
  • [37] Kinetics of oxygen reduction on Pt(hkl) electrodes: Implications for the crystallite size effect with supported Pt electrocatalysts
    Markovic, N
    Gasteiger, H
    Ross, PN
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (05) : 1591 - 1597
  • [38] Synthesis and Characterization of Palladium–Platinum Core–Shell Electrocatalysts for Oxygen Reduction
    Michael P. Humbert
    Brandon H. Smith
    Qi Wang
    Steven N. Ehrlich
    Minhua Shao
    Electrocatalysis, 2012, 3 : 298 - 303
  • [39] A review of Pt-based electrocatalysts for oxygen reduction reaction
    Zhang, Changlin
    Shen, Xiaochen
    Pan, Yanbo
    Peng, Zhenmeng
    FRONTIERS IN ENERGY, 2017, 11 (03) : 268 - 285
  • [40] Analyses of Oxygen Reduction Reaction at Pt-Based Electrocatalysts
    Watanabe, Masahiro
    Wakisaka, Mitsuru
    Yano, Hiroshi
    Uchida, Hiroyuki
    PROTON EXCHANGE MEMBRANE FUEL CELLS 8, PTS 1 AND 2, 2008, 16 (02): : 199 - +