Large time behavior of solution to a quasilinear chemotaxis model describing tumor angiogenesis with/without logistic source

被引:0
|
作者
Xiao, Min [1 ]
Zhao, Jie [2 ]
He, Qiurong [1 ]
机构
[1] Faculty of Science, Yibin University, Yibin,644000, China
[2] College of Mathematics and Information, China West Normal University, Nanchong,637000, China
关键词
D O I
10.1016/j.nonrwa.2024.104214
中图分类号
学科分类号
摘要
In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: ut=∇⋅(D(u)∇u)−χ∇⋅(u∇v)+ξ∇⋅(u∇w)+μu−μu2,x∈Ω,t>0,vt=Δv+∇⋅(v∇w)−v+u,x∈Ω,t>0,0=Δw−w+u,x∈Ω,t>0,[Formula presented]=0,x∈∂Ω,t>0,u(x,0)=u0(x),v(x,0)=v0(x),x∈Ω,in a bounded smooth domain Ω⊂Rn(n≤3), where the parameter χ,ξ>0,μ≥0, D(u) is supposed to satisfy the behind property D(u)≥(u+1)αwithα>0.Assume that either μ≥0,α>1 or μ=0,ξ≥λ1∗χ2, where the parameter λ1∗=λ1∗(u0,v0,Ω)>0, then the system admits a global classical solution (u,v,w) by subtle energy estimates. Moreover, when μ=0, it is asserted that the corresponding solution exponentially converges to the constant stationary solution (u0¯,u0¯,u0¯) provided the initial data u0 is sufficiently small, where u0¯=[Formula presented]. Finally, when μ>0, it can be proved that the corresponding solution of the system decays to (1,1,1) exponentially for suitable large μ. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production
    Ding, Mengyao
    Wang, Wei
    Zhou, Shulin
    Zheng, Sining
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) : 6729 - 6777
  • [32] Large Time Behavior in a Chemotaxis Model with Nonlinear General Diffusion for Tumor Invasion
    Fune, Kentarou
    Istnda, Sachiko
    Ito, Akio
    Yokota, Tomomi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (01): : 37 - 80
  • [33] Finite-time blow-up of solution for a chemotaxis model with singular sensitivity and logistic source
    Zhang, Jing
    Mu, Chunlai
    Tu, Xinyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [34] Finite-time blow-up of solution for a chemotaxis model with singular sensitivity and logistic source
    Jing Zhang
    Chunlai Mu
    Xinyu Tu
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [35] Large time behavior for a multidimensional chemotaxis model
    Luo, Lan
    BOUNDARY VALUE PROBLEMS, 2017,
  • [36] Large time behavior for a multidimensional chemotaxis model
    Lan Luo
    Boundary Value Problems, 2017
  • [37] Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production
    Dai, Feng
    Liu, Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) : 10839 - 10918
  • [38] Global boundedness and asymptotic behavior in a quasilinear attraction-repulsion chemotaxis model with nonlinear signal production and logistic-type source
    Ren, Guoqiang
    Liu, Bin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (13): : 2619 - 2689
  • [39] GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF A TUMOR ANGIOGENESIS MODEL WITH CHEMOTAXIS AND HAPTOTAXIS
    Morales-Rodrigo, Cristian
    Ignacio Tello, J.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (03): : 427 - 464
  • [40] Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis-haptotaxis
    Pang, Peter Y. H.
    Wang, Yifu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (07): : 1387 - 1412