Low-Light Image Enhancement With SAM-Based Structure Priors and Guidance

被引:0
|
作者
Li, Guanlin [1 ,2 ]
Zhao, Bin [3 ,4 ]
Li, Xuelong [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
[3] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Minist Ind & Informat Technol, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ, Key Lab Intelligent Interact & Applicat, Minist Ind & Informat Technol, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Lighting; Feature extraction; Image restoration; Image edge detection; Image enhancement; Image color analysis; image segmentation; low-light; SAM; structure modeling; GAMMA CORRECTION; NETWORK;
D O I
10.1109/TMM.2024.3414328
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-light images often suffer from severe detail lost in darker areas and non-uniform illumination distribution across distinct regions. Thus, structure modeling and region-specific illumination manipulation are crucial for high-quality enhanced image generation. However, previous methods encounter limitations in exploring robust structure priors and lack adequate modeling of illumination relationships among different regions, resulting in structure artifacts and color deviations. To alleviate this limitation, we propose a Segmentation-Guided Framework (SGF) which integrates the constructed robust segmentation priors to guide the enhancement process. Specifically, SGF first constructs a robust image-level edge prior based on the segmentation results of the Segment Anything Model (SAM) in a zero-shot manner. Then, we generate lighted-up region-aware feature-level prior by incorporating region-aware dynamic convolution. To adequately model long-distance illumination interactions across distinct regions, we design a segmentation-guided transformer block (SGTB), which utilizes the lighted-up region-aware feature-level prior to guide self-attention calculation. By arranging the SGTBs in a symmetric hierarchical structure, we derive a segmentation-guided enhancement module that operates under the guidance of both the image and feature-level priors. Comprehensive experimental results show that our SGF performs remarkably in both quantitative evaluation and visual comparison.
引用
收藏
页码:10854 / 10866
页数:13
相关论文
共 50 条
  • [21] Low-light image enhancement based on normal-light image degradation
    Bai Zhao
    Xiaolin Gong
    Jian Wang
    Lingchao Zhao
    Signal, Image and Video Processing, 2022, 16 : 1409 - 1416
  • [22] Learning Semantic-Aware Knowledge Guidance for Low-Light Image Enhancement
    Wu, Yuhui
    Pan, Chen
    Wang, Guoqing
    Yang, Yang
    Wei, Jiwei
    Li, Chongyi
    Shen, Heng Tao
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1662 - 1671
  • [23] Low-Light Image Enhancement Using a Simple Network Structure
    Matsui, Takuro
    Ikehara, Masaaki
    IEEE ACCESS, 2023, 11 : 65507 - 65516
  • [24] Multiscale Residual and Attention Guidance for Low-Light Image Enhancement in Visual SLAM
    Li, Deping
    Zhang, Han
    Liu, Ning
    Wang, Gao
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (23): : 38370 - 38379
  • [25] Low-Light Stereo Image Enhancement
    Huang, Jie
    Fu, Xueyang
    Xiao, Zeyu
    Zhao, Feng
    Xiong, Zhiwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2978 - 2992
  • [26] Low-Light Hyperspectral Image Enhancement
    Li, Xuelong
    Li, Guanlin
    Zhao, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [28] Structure-Based Low-Rank Retinex Model for Low-Light Image Enhancement
    Wang, Liqian
    Ge, Qi
    Shao, Wenze
    Wu, Pengfei
    Deng, Haisong
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [29] Self-Supervised Low-Light Image Enhancement Using Discrepant Untrained Network Priors
    Liang, Jinxiu
    Xu, Yong
    Quan, Yuhui
    Shi, Boxin
    Ji, Hui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7332 - 7345
  • [30] FIPNet: Self-supervised low-light image enhancement combining feature and illumination priors
    Cao, Jie
    Zou, Qijie
    Ning, Xin
    Wang, Zhen
    Wang, Gang
    NEUROCOMPUTING, 2025, 623