Estimating parameters of Lorenz chaotic system with MCMC method

被引:0
|
作者
Cao, Xiao-Qun [1 ]
Song, Jun-Qiang [1 ]
Zhang, Wei-Min [1 ]
Cai, Qi-Fa [2 ]
Zhang, Li-Lun [1 ]
机构
[1] College of Computer, National Univ. of Defense Technology, Changsha 410073, China
[2] 61741 Troops of PLA, Beijing 100071, China
关键词
Monte Carlo methods - Probability density function - Markov processes - Chaotic systems - Chains - Numerical methods - Probability distributions;
D O I
暂无
中图分类号
学科分类号
摘要
Based on Bayesian theorem, a method is proposed to estimate the unknown parameters of Lorenz chaotic system using Markov Chain Monte Carlo (MCMC) method. Firstly, the posterior probability density function for unknown parameters is deduced. Secondly, taking the posterior probability as the invariant distribution, the Adaptive Metropolis algorithm is used to construct the Markov Chains. Thirdly, the converged samples are used to calculate the mathematic expectation of the unknown parameters. The results of numerical experiments show that the parameters estimated by the new method have high precision and the noise is filtered effectively from observations at the same time.
引用
收藏
页码:68 / 72
相关论文
共 50 条
  • [31] A hidden chaotic attractor in the classical Lorenz system
    Munmuangsaen, Buncha
    Srisuchinwong, Banlue
    CHAOS SOLITONS & FRACTALS, 2018, 107 : 61 - 66
  • [32] Dislocated feedback synchronization of Lorenz chaotic system
    Tao, CH
    PHYSICS LETTERS A, 2006, 348 (3-6) : 201 - 209
  • [33] Symplectic Synchronization of Lorenz-Stenflo System with Uncertain Chaotic Parameters via Adaptive Control
    Yang, Cheng-Hsiung
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [34] Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems
    Orue, A. B.
    Fernandez, V.
    Alvarez, G.
    Pastor, G.
    Romera, M.
    Li, Shujun
    Montoya, F.
    PHYSICS LETTERS A, 2008, 372 (34) : 5588 - 5592
  • [35] Parameters identification of nonlinear Lorenz chaotic system for high-precision model reference synchronization
    Peng, Chao-Chung
    Li, Yang-Rui
    NONLINEAR DYNAMICS, 2022, 108 (02) : 1733 - 1754
  • [36] Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters
    Zhao Ling-Dong
    Hu Jian-Bing
    Liu Xu-Hui
    ACTA PHYSICA SINICA, 2010, 59 (04) : 2305 - 2309
  • [37] Parameters identification of nonlinear Lorenz chaotic system for high-precision model reference synchronization
    Chao-Chung Peng
    Yang-Rui Li
    Nonlinear Dynamics, 2022, 108 : 1733 - 1754
  • [38] Estimating parameters by anticipating chaotic synchronization
    Wei, Hengdong
    Li, Liping
    CHAOS, 2010, 20 (02)
  • [39] RGB Color Image Encryption Method Based on Lorenz Chaotic System and DNA Computation
    Zhang, Qiang
    Wei, Xiaopeng
    IETE TECHNICAL REVIEW, 2013, 30 (05) : 404 - 409
  • [40] Rules for predicting regime change in the Lorenz chaotic system based on the Lorenz map
    Li Ai-Bing
    Zhang Li-Feng
    ACTA PHYSICA SINICA, 2013, 62 (12)