3D statistical shape models for automatic segmentation of the fetal cerebellum in ultrasound images

被引:0
|
作者
Velasquez-Rodriguez, Gustavo A. R. [1 ]
Fanti-Gutierrez, Zian [2 ]
Torres, Fabian [3 ]
Medina-Banuelos, Veronica [4 ]
Escalante-Ramirez, Boris [5 ]
Marin, Lisbeth Camargo [6 ]
Huerta, Mario Guzman [6 ]
Cosio, Fernando Arambula [7 ]
机构
[1] Univ Nacl Autonoma Mexico, Postgrad Program Elect Engn, Ciudad Univ, Mexico City 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Ciudad Univ, Mexico City 04510, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Fis, Ciudad Univ, Mexico City 04510, Mexico
[4] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Basicas & Ingn, Mexico City 09340, Mexico
[5] Univ Nacl Autonoma Mexico, Fac Ingn, Ciudad Univ, Mexico City 04510, Mexico
[6] Natl Inst Perinatol, Dept Translat Med, Mexico City 11000, Mexico
[7] Univ Nacl Autonoma Mexico, Unidad Acad IIMAS Yucatan, Inst Invest Matemat Aplicadas & Sistemas IIMAS, Merida 97205, Yucatan, Mexico
关键词
3D segmentation of the cerebellum; Spherical harmonics; Point distribution models; CLASSIFICATION;
D O I
10.1007/s11760-024-03615-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The cerebellum is an important structure to determine fetal development because its volume has a high correlation with gestational age. Manual annotation of the cerebellum in 3D ultrasound images (to measure the cerebellar volume) requires highly trained experts to perform a time-consuming task. To assist in this task, we developed a totally automatic system for the 3D segmentation of the cerebellum in ultrasound images of the fetal brain, using a 3D Point Distribution Model (PDM) obtained from another statistical shape model based on a spherical harmonics (SPHARMs) representation, which provides a very efficient basis for the construction of statistical shape models of 3D organs with a spherical topology. Our PDM of the fetal cerebellum was automatically adjusted with the optimization of an objective function based on gray level voxel profiles, using a genetic algorithm. An automatic initialization and plane selection scheme was also developed, based on the detection of the cerebellum on each plane by a convolutional neural network (YOLO v2). Our results of the 3D segmentation of 18 ultrasound volumes of the fetal brain are: Dice coefficient of 0.83 +/- 0.10 and Hausdorff distance of 3.61 +/- 0.83 mm. The methods reported show potential to successfully assist the experts in the assessment of fetal growth in ultrasound volumes.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Prostate boundary segmentation from ultrasound images using 2D active shape models: Optimisation and extension to 3D
    Hodge, Adam C.
    Fenster, Aaron
    Downey, Donal B.
    Ladak, Hanif M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2006, 84 (2-3) : 99 - 113
  • [42] Real-time active shape models for segmentation of 3D cardiac ultrasound
    Hansegard, Joger
    Orderud, Fredrik
    Rabben, Stein I.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2007, 4673 : 157 - 164
  • [43] Adapting active shape models for 3D segmentation of tubular structures in medical images
    de Bruijne, M
    van Ginneken, B
    Viergever, MA
    Niessen, WJ
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2003, 2732 : 136 - 147
  • [44] Focused shape models for hip joint segmentation in 3D magnetic resonance images
    Chandra, Shekhar S.
    Xia, Ying
    Engstrom, Craig
    Crozier, Stuart
    Schwarz, Raphael
    Fripp, Jurgen
    MEDICAL IMAGE ANALYSIS, 2014, 18 (03) : 567 - 578
  • [45] Statistical Shape Analysis for 3D Facial Images
    Nakatsu, M.
    Han, X. H.
    Kimura, R.
    Chen, Y. W.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2015), 2015, 123 : 337 - 340
  • [46] A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images
    Ghose, Soumya
    Oliver, Arnau
    Mitra, Jhimli
    Marti, Robert
    Llado, Xavier
    Freixenet, Jordi
    Sidibe, Desire
    Vilanova, Joan C.
    Comet, Josep
    Meriaudeau, Fabrice
    MEDICAL IMAGE ANALYSIS, 2013, 17 (06) : 587 - 600
  • [47] Automatic Prostate Segmentation in MR images Based on 3D Active Contours with Shape Constraints
    Skalski, Andrzej
    Lagwa, Jakub
    Kedzierawski, Piotr
    Zielinski, Tomasz
    Kuszewski, Tomasz
    2013 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2013, : 246 - 249
  • [48] Automatic detection and segmentation of renal lesions in 3D contrast-enhanced ultrasound images
    Prevost, Raphael
    Cohen, Laurent D.
    Correas, Jean-Michel
    Ardon, Roberto
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [49] Automatic segmentation approach to extracting neonatal cerebral ventricles from 3D ultrasound images
    Qiu, Wu
    Chen, Yimin
    Kishimoto, Jessica
    de Ribaupierre, Sandrine
    Chiu, Bernard
    Fenster, Aaron
    Yuan, Jing
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 181 - 191
  • [50] MANUAL AND AUTOMATIC 3D SEGMENTATION OF THE PUBIC PART OF THE LEVATOR ANI MUSCLE IN ULTRASOUND IMAGES
    Van den Noort, F.
    Grob, A. T.
    Van Stralen, M.
    Slump, C. H.
    Van der Vaart, C.
    INTERNATIONAL UROGYNECOLOGY JOURNAL, 2017, 28 : S149 - S150