Data-Driven Dissipativity Analysis of Linear Parameter-Varying Systems

被引:0
|
作者
Verhoek C. [1 ]
Berberich J. [2 ]
Haesaert S. [1 ]
Allgower F. [2 ]
Toth R. [1 ]
机构
[1] Control Systems Group, Eindhoven University of Technology
[2] Institute for Systems Theory and Automatic Control, University of Stuttgart
来源
IEEE Trans Autom Control | 2024年 / 12卷 / 8603-8616期
关键词
Analytical models; Behavioral systems; data-driven control; dissipativity analysis; linear parameter-varying systems; Linear systems; Nonlinear systems; Processor scheduling; Time-varying systems; Trajectory; Vectors;
D O I
10.1109/TAC.2024.3417855
中图分类号
学科分类号
摘要
We derive direct data-driven dissipativity analysis methods for Linear Parameter-Varying (LPV) systems using a single sequence of input-scheduling-output data. By means of constructing a semi-definite program subject to linear matrix inequality constraints based on this <italic>data-dictionary</italic>, direct data-driven verification of <inline-formula><tex-math notation="LaTeX">$(Q,S,R)$</tex-math></inline-formula>-type of dissipativity properties of the data-generating LPV system is achieved. Multiple implementation methods are proposed to achieve efficient computational properties and to even exploit structural information on the scheduling, e.g., rate bounds. The effectiveness and trade-offs of the proposed methodologies are shown in simulation studies of academic and physically realistic examples. IEEE
引用
下载
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [21] Cooperative Control of Linear Parameter-Varying Systems
    Seyboth, Georg S.
    Schmidt, Gerd S.
    Allgoewer, Frank
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2407 - 2412
  • [22] Linear parameter-varying descriptions of nonlinear systems
    Bruzelius, F
    Pettersson, S
    Breitholtz, C
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 1374 - 1379
  • [23] Robust Stability Analysis of Linear Parameter-Varying Systems With Markov Jumps
    Vargas, Alessandro N.
    Agulhari, Cristiano M.
    Oliveira, Ricardo C. L. F.
    Preciado, Victor M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (11) : 6234 - 6239
  • [24] A review on data-driven linear parameter-varying modeling approaches: A high-purity distillation column case study
    Bachnas, A. A.
    Toth, R.
    Ludlage, J. H. A.
    Mesbah, A.
    JOURNAL OF PROCESS CONTROL, 2014, 24 (04) : 272 - 285
  • [25] Robust L1 Model Reduction for Linear Parameter-Varying Systems with Parameter-Varying Delays
    Liang, Yan
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND AUTOMATION ENGINEERING (ECAE 2017), 2017, 140 : 148 - 152
  • [26] Subspace identification of multivariable linear parameter-varying systems
    Verdult, V
    Verhaegen, M
    AUTOMATICA, 2002, 38 (05) : 805 - 814
  • [27] Distributed Control of Linear Parameter-Varying Decomposable Systems
    Hoffmann, C.
    Eichler, A.
    Werner, H.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2380 - 2385
  • [28] Stability radius of linear parameter-varying systems and applications
    Ngoc, Pham Huu Anh
    Naito, Toshiki
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5736 - 5741
  • [29] Frequency Response Functions of Linear Parameter-Varying Systems
    Schoukens, Maarten
    Toth, Roland
    IFAC PAPERSONLINE, 2019, 52 (28): : 32 - 37
  • [30] Stability radius of linear parameter-varying systems and applications
    Ngoc, Pham Huu Anh
    Naito, Toshiki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) : 170 - 191