SUPERLINEAR CONVERGENCE OF A SEMISMOOTH NEWTON METHOD FOR SOME OPTIMIZATION PROBLEMS WITH APPLICATIONS TO CONTROL THEORY*

被引:0
|
作者
Departmento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Telecomunicación, Universidad de Cantabria, Santander [1 ]
39005, Spain
机构
来源
SIAM J. Optim. | / 4卷 / 3681-3698期
关键词
Newton-Raphson method;
D O I
10.1137/24M1644286
中图分类号
学科分类号
摘要
In this paper, we formulate a semismooth Newton method for an abstract optimization problem and prove its superlinear convergence by assuming that the no-gap second order sufficient optimality condition and the strict complementarity condition are fulfilled at the local minimizer. Many control problems fit this abstract formulation. In particular, we apply this abstract result to distributed control problems of a semilinear elliptic equation, to boundary bilinear control problems associated with a semilinear elliptic equation, and to distributed control of a semilinear parabolic equation. © 2024 Society for Industrial and Applied Mathematics.
引用
下载
收藏
页码:3681 / 3698
相关论文
共 50 条
  • [1] ON THE LOCAL CONVERGENCE OF THE SEMISMOOTH NEWTON METHOD FOR COMPOSITE OPTIMIZATION
    Hu, Jiang
    Tian, Tonghua
    Pan, Shaohua
    Wen, Zaiwen
    arXiv, 2022,
  • [2] On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization
    Milzarek, Andre
    Xiao, Xiantao
    Wen, Zaiwen
    Ulbrich, Michael
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (10) : 2151 - 2170
  • [3] On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization
    Andre Milzarek
    Xiantao Xiao
    Zaiwen Wen
    Michael Ulbrich
    Science China Mathematics, 2022, 65 : 2151 - 2170
  • [4] On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization
    Andre Milzarek
    Xiantao Xiao
    Zaiwen Wen
    Michael Ulbrich
    Science China Mathematics, 2022, 65 (10) : 2151 - 2170
  • [5] A semismooth Newton method for topology optimization
    Amstutz, Samuel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) : 1585 - 1595
  • [6] Achieving Globally Superlinear Convergence for Distributed Optimization with Adaptive Newton Method
    Zhang, Jiaqi
    You, Keyou
    Basar, Tamer
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 2329 - 2334
  • [7] A Semismooth Newton Multigrid Method for Constrained Elliptic Optimal Control Problems
    Liu, Jun
    Huang, Tingwen
    Xiao, Mingqing
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 397 - 405
  • [8] The Josephy–Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization
    Alexey F. Izmailov
    Alexey S. Kurennoy
    Mikhail V. Solodov
    Set-Valued and Variational Analysis, 2013, 21 : 17 - 45
  • [9] The superlinear convergence of a new quasi-Newton-SQP method for constrained optimization
    Wei, Zengxin
    Liu, Liying
    Yao, Shengwei
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (02) : 791 - 801
  • [10] Application of a modified semismooth Newton method to some elasto-plastic problems
    Sysala, Stanislav
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (10) : 2004 - 2021