Ultra-fast activated NH4+-intercalated vanadium oxide cathode for high-performance aqueous zinc-ion batteries

被引:0
|
作者
机构
[1] Xu, Yilong
[2] 2,Shao, Fei
[3] 2,Huang, Yongfeng
[4] Huang, Xudong
[5] Jiang, Fuyi
[6] 2,Kang, Feiyu
[7] Liu, Wenbao
基金
中国国家自然科学基金;
关键词
Activation analysis - Chemical activation - Fast charging (Batteries) - II-VI semiconductors - Intercalation - Intercalation compounds - Nanocrystals - Vanadium dioxide - Zinc sulfide;
D O I
10.1016/j.jcis.2024.12.162
中图分类号
学科分类号
摘要
Vanadium-based oxides hold immense promise as cathode materials for aqueous zinc-ion batteries (AZIBs); however, their practical implementation faces a significant hurdle: a prolonged activation period is typically required to achieve peak performance. This activation process, which often requires hundreds of cycles, arises from the complex behavior of mixed-valence vanadium systems. In this paper, we propose a solution based on an elegant and simple electrical activation strategy. By applying a carefully designed precycling charging protocol to NH4+-intercalated vanadium oxide (VON), we achieved activation speeds, reaching peak capacity within just several to 25 cycles—even under high current densities. The electrochemically activated material (E-VON) demonstrates performance metrics: delivering a high specific capacity of 359.1 mAh g−1 at 0.1 A g−1, maintaining a rate capability of 155.5 mAh g−1 at 10 A g−1, and showing cycling stability. The electrical activation process enhances ion transport within the VON structure and triggers a Zn2+/H+ coinsertion mechanism during cycling. This mechanism is intricately linked to the reversible formation and dissolution of a basic zinc sulfonate by-product, offering new insights into charge storage processes within vanadium-based AZIB cathodes. Our comprehensive characterization revealed how this activation strategy fundamentally transforms the structure and electrochemical behavior of materials, providing a practical pathway to overcome the longstanding limitations of traditional vanadium oxide cathodes. This study focuses on rapidly activating cathode materials, advancing the development of high-performance AZIBs. © 2024 Elsevier Inc.
引用
收藏
页码:226 / 235
相关论文
共 50 条
  • [41] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Xian-Zhi Zhai
    Jin Qu
    Shu-Meng Hao
    Ya-Qiong Jing
    Wei Chang
    Juan Wang
    Wei Li
    Yasmine Abdelkrim
    Hongfu Yuan
    Zhong-Zhen Yu
    Nano-Micro Letters, 2020, 12
  • [42] Triple engineering boosts high-performance accordion-like vanadium oxide for practical aqueous zinc-ion batteries
    Ren, Xiaohe
    Sun, Mengxuan
    Gan, Ziwei
    Sun, Yongxiu
    Wang, Nengze
    Hu, Lei
    Yan, Zongkai
    Jia, Chunyang
    Li, Zhijie
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [43] Tunable Vanadium Oxide Microflowers as High-Capacity Cathode Materials for Aqueous Rechargeable Zinc-Ion Batteries
    Kidanu, Weldejewergis Gebrewahid
    Lim, Yeeun
    Nguyen, Tuan Loi
    Hur, Jaehyun
    Kim, Il Tae
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11): : 14311 - 14322
  • [44] Al3+intercalated NH4V4O10 nanosheet on carbon cloth for high-performance aqueous zinc-ion batteries
    Wang, Ke
    Yuan, Ruilong
    Li, Mengjun
    Huang, Ying
    Ai, Wei
    Du, Zhuzhu
    He, Pan
    Wang, Binwu
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [45] Ferroelectric-Enhanced cathode kinetics toward High-Performance aqueous Zinc-Ion batteries
    Li, Yue
    Cui, Xiaosha
    Yan, Jianfeng
    Zhang, Yaxiong
    Xie, Erqing
    Fu, Jiecai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 650 : 1605 - 1611
  • [46] Manganese oxides hierarchical microspheres as cathode material for high-performance aqueous zinc-ion batteries
    Yang, Bo
    Cao, Xianwen
    Wang, Shenghan
    Wang, Ning
    Sun, Chenglin
    ELECTROCHIMICA ACTA, 2021, 385 (385)
  • [47] Unlocking Layered Double Hydroxide as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Zhao, Yajun
    Zhang, Pengjun
    Liang, Jinrui
    Xia, Xiaoyu
    Ren, Longtao
    Song, Li
    Liu, Wen
    Sun, Xiaoming
    ADVANCED MATERIALS, 2022, 34 (37)
  • [48] Carbon nanotubes intertwined porous vanadium oxide heterostructured microfibers as high-performance cathodes for aqueous zinc-ion batteries
    Wang, Menglian
    Nie, Kaiqi
    Wu, Haibo
    Lv, Xiaoxin
    Deng, Jiujun
    Ji, Hongbing
    APPLIED SURFACE SCIENCE, 2023, 612
  • [49] Structural Engineering of Vanadium Oxide Cathodes by Mn2+ Preintercalation for High-Performance Aqueous Zinc-Ion Batteries
    Li, Fengfeng
    Sheng, Hongwei
    Ma, Hongyun
    Qi, Yifeng
    Shao, Mingjiao
    Yuan, Jiao
    Li, Wenquan
    Lan, Wei
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 6201 - 6213
  • [50] Recent Progress on High-Performance Cathode Materials for Zinc-Ion Batteries
    Zhang, Maiwen
    Liang, Ruilin
    Or, Tyler
    Deng, Ya-Ping
    Yu, Aiping
    Chen, Zhongwei
    SMALL STRUCTURES, 2021, 2 (02):