A new method for absolute value equation with 2n distinct solutions

被引:0
|
作者
Yong, Longquan [1 ,2 ]
Liu, Sanyang [1 ]
Tuo, Shouheng [2 ]
机构
[1] School of Science, Xidian University, No. 2, South Taibai Road, Xi'an 710071, China
[2] School of Mathematics and Computer Science, Shaanxi University of Technology, Chaoyang Road, Hanzhong 723001, China
来源
ICIC Express Letters | 2014年 / 8卷 / 07期
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
We propose a new method, named derived method, for absolute value equation (AVE) with 2n distinct solutions. Numerical experiments show that the method can get all solutions of the given AVE problem. What is more, the new method takes less time than Jiri Rohn's method for the same AVE. © 2014 ISSN 1881-803X.
引用
收藏
页码:1917 / 1922
相关论文
共 50 条
  • [31] On Picard-SHSS iteration method for absolute value equation
    Miao, Shu-Xin
    Xiong, Xiang-Tuan
    Wen, Jin
    AIMS MATHEMATICS, 2021, 6 (02): : 1743 - 1753
  • [32] A special shift splitting iteration method for absolute value equation
    Wu, ShiLiang
    Li, CuiXia
    AIMS MATHEMATICS, 2020, 5 (05): : 5171 - 5183
  • [33] A New Efficient Method for Absolute Value Equations
    Guo, Peng
    Iqbal, Javed
    Ghufran, Syed Muhammad
    Arif, Muhammad
    Alhefthi, Reem K.
    Shi, Lei
    MATHEMATICS, 2023, 11 (15)
  • [34] Existence of 2n nontrivial solutions for discrete two-point boundary value problems
    Zhang, G
    Yang, ZL
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (07) : 1181 - 1187
  • [35] THE DIOPHANTINE EQUATION X2+7=2N
    JOHNSON, W
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (01): : 59 - 62
  • [36] Picard splitting method and Picard CG method for solving the absolute value equation
    Lva, Chang-Qing
    Ma, Chang-Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3643 - 3654
  • [37] A new concave minimization algorithm for the absolute value equation solution
    Moslem Zamani
    Milan Hladík
    Optimization Letters, 2021, 15 : 2241 - 2254
  • [38] Complete solving the quadratic equation mod 2n
    Dehnavi, S. M.
    Shamsabad, M. R. Mirzaee
    Rishakani, A. Mahmoodi
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (01) : 75 - 83
  • [39] A new concave minimization algorithm for the absolute value equation solution
    Zamani, Moslem
    Hladik, Milan
    OPTIMIZATION LETTERS, 2021, 15 (06) : 2241 - 2254
  • [40] The unique solution of a class of the new generalized absolute value equation
    Wu, Shi-Liang
    APPLIED MATHEMATICS LETTERS, 2021, 116