Aligning enhanced feature representation for generalized zero-shot learning

被引:0
|
作者
Zhiyu FANG
Xiaobin ZHU
Chun YANG
Hongyang ZHOU
Jingyan QIN
Xu-Cheng YIN
机构
[1] SchoolofComputer&CommunicationEngineering,UniversityofScienceandTechnologyBeijing
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Constructing an effective common latent embedding by aligning the latent spaces of cross-modal variational autoencoders(VAEs) is a popular strategy for generalized zero-shot learning(GZSL). However, due to the lack of fine-grained instance-wise annotations, existing VAE methods can easily suffer from the posterior collapse problem. In this paper, we propose an innovative asymmetric VAE network by aligning enhanced feature representation(AEFR) for GZSL. Distinguished from general VAE structures, we designed two asymmetric encoders for visual and semantic observations and one decoder for visual reconstruction. Specifically, we propose a simple yet effective gated attention mechanism(GAM) in the visual encoder for enhancing the information interaction between observations and latent variables, alleviating the possible posterior collapse problem effectively. In addition, we propose a novel distributional decoupling-based contrastive learning(D2-CL) to guide learning classification-relevant information while aligning the representations at the taxonomy level in the latent representation space. Extensive experiments on publicly available datasets demonstrate the state-of-the-art performance of our method. The source code is available at https://github.com/seeyourmind/AEFR.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [31] Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2371 - 2381
  • [32] Semantics Disentangling for Generalized Zero-Shot Learning
    Chen, Zhi
    Luo, Yadan
    Qiu, Ruihong
    Wang, Sen
    Huang, Zi
    Li, Jingjing
    Zhang, Zheng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8692 - 8700
  • [33] Learning MLatent Representations for Generalized Zero-Shot Learning
    Ye, Yalan
    Pan, Tongjie
    Luo, Tonghoujun
    Li, Jingjing
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2252 - 2265
  • [34] Meta-Learning for Generalized Zero-Shot Learning
    Verma, Vinay Kumar
    Brahma, Dhanajit
    Rai, Piyush
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6062 - 6069
  • [35] Learning the Compositional Domains for Generalized Zero-shot Learning
    Dong, Hanze
    Fu, Yanwei
    Hwang, Sung Ju
    Sigal, Leonid
    Xue, Xiangyang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221
  • [36] A Review of Generalized Zero-Shot Learning Methods
    Pourpanah, Farhad
    Abdar, Moloud
    Luo, Yuxuan
    Zhou, Xinlei
    Wang, Ran
    Lim, Chee Peng
    Wang, Xi-Zhao
    Wu, Q. M. Jonathan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4051 - 4070
  • [37] Attributes learning network for generalized zero-shot learning
    Yun, Yu
    Wang, Sen
    Hou, Mingzhen
    Gao, Quanxue
    NEURAL NETWORKS, 2022, 150 : 112 - 118
  • [38] Transfer Increment for Generalized Zero-Shot Learning
    Feng, Liangjun
    Zhao, Chunhui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2506 - 2520
  • [39] A De-redundant Network with Enhanced Classifier for Generalized Zero-Shot Learning
    Ding, Jiayu
    Hu, Xiao
    Xiang, Junjiang
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 253 - 258
  • [40] Generating generalized zero-shot learning based on dual-path feature enhancement
    Chang, Xinyi
    Wang, Zhen
    Liu, Wenhao
    Gao, Limeng
    Yan, Bingshuai
    MULTIMEDIA SYSTEMS, 2024, 30 (05)