Interpolation of Closed Ideals of Bilinear Operators

被引:0
|
作者
Fernando Cobos [1 ]
Luz MFernndezCabrera [2 ]
Antn Martnez [3 ]
机构
[1] Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas,Universidad Complutense de Madrid
[2] Sección Departamental del Departamento de Análisis Matemático y Matemática Aplicada,Facultad de Estudios Estadísticos, Universidad Complutense de Madrid
[3] Departamento de Matemática Aplicada I, Escuela de Ingenier?ιa
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
We extend the(outer) measure γI associated to an operator ideal I to a measure γI for bounded bilinear operators. If I is surjective and closed, and J is the class of those bilinear operators such that γI(T) = 0, we prove that J coincides with the composition bideal I ? B. If I satisfies the Σr-condition, we establish a simple necessary and sufficient condition for an interpolated operator by the real method to belong to J. Furthermore, if in addition I is symmetric, we prove a formula for the measure γI of an operator interpolated by the real method. In particular, results apply to weakly compact operators.
引用
收藏
页码:209 / 230
页数:22
相关论文
共 50 条
  • [21] Interpolation of Closed Subspaces and Invertibility of Operators
    Asekritova, Irina
    Cobos, Fernando
    Kruglyak, Natan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (01): : 1 - 15
  • [22] Remarks on interpolation of bilinear operators by methods associated to polygons
    Fernández-Martínez, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (01): : 49 - 56
  • [23] Closed ideals of operators on the Tsirelson and Schreier spaces
    Beanland, Kevin
    Kania, Tomasz
    Laustsen, Niels Jakob
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [24] Closed ideals of operators on the Baernstein and Schreier spaces
    Laustsen, Niels Jakob
    Smith, James
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)
  • [26] INTERPOLATION THEORY FOR BANACH IDEALS OF LIMITED LINEAR OPERATORS
    PIETSCH, A
    TRIEBEL, H
    STUDIA MATHEMATICA, 1968, 31 (01) : 95 - &
  • [27] Compactness interpolation results for bilinear operators of convolution type and for operators of product type
    Cobos, Fernando
    Fernandez-Cabrera, Luz M.
    Martinez, Anton
    JOURNAL OF APPROXIMATION THEORY, 2022, 274
  • [28] Weakly compact bilinear operators among real interpolation spaces
    Cobos, Fernando
    Fernandez-Cabrera, Luz M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [29] Interpolation of bilinear operators between quasi-Banach spaces
    Grafakos, Loukas
    Mastylo, Mieczyslaw
    POSITIVITY, 2006, 10 (03) : 409 - 429
  • [30] Interpolation of Bilinear Operators Between Quasi-Banach Spaces
    Loukas Grafakos
    Mieczysław Mastyło
    Positivity, 2006, 10 : 409 - 429