共 50 条
Subsurface Temperature and Salinity Structures Inversion Using a Stacking-Based Fusion Model from Satellite Observations in the South China Sea
被引:0
|作者:
Can LUO
[1
]
Mengya HUANG
[1
]
Shoude GUAN
[1
,2
]
Wei ZHAO
[1
,2
]
Fengbin TIAN
[1
]
Yuan YANG
[1
]
机构:
[1] Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China
[2] Laoshan
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS) in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation. Traditionally, real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models, which are usually challenging and costly. Recently, dynamical, statistical, or machine learning models have been proposed to invert the OST/OSS from sea surface information; however, these models mainly focused on the inversion of monthly OST and OSS. To address this issue, we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost, Random Forest,and LightGBM) to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset. Subsequently, a fusion of temperature and salinity is employed to reconstruct OST and OSS. In the validation dataset, the depth-averaged Correlation(Corr) of the estimated OST(OSS) is 0.919(0.83), and the average Root-Mean-Square Error(RMSE) is0.639°C(0.087 psu), with a depth-averaged coefficient of determination(R2) of 0.84(0.68). Notably, at the thermocline where the base models exhibit their maximum error, the stacking-based fusion model exhibited significant performance enhancement, with a maximum enhancement in OST and OSS inversion exceeding 10%. We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM) data and BOA_Argo dataset during the passage of a mesoscale eddy. This study shows that the proposed model can effectively invert the real-time OST and OSS, potentially enhancing the understanding of multi-scale oceanic processes in the SCS.
引用
收藏
页码:204 / 220
页数:17
相关论文