SYMMETRIES AND LIE ALGEBRA OF RAMANUJAN EQUATION

被引:0
|
作者
Halder, Amlan K. [1 ]
Seshadri, Rajeswari [1 ]
Sinuvasan, R. [2 ]
Leach, P.G.L. [3 ,4 ]
机构
[1] Department of Mathematics, Pondicherry University, Puducherry,605014, India
[2] Department of Mathematics, VIT-AP, Andhra Pradesh, Amaravati,522237, India
[3] School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
[4] Institute for Systems Science, Durban University of Technology, Durban, South Africa
来源
arXiv | 2023年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Differential equations
引用
收藏
相关论文
共 50 条
  • [21] A Lie symmetries interpretation of the neutron diffusion equation
    Ramsey, Scott D.
    Remedes, Tyler J.
    ANNALS OF NUCLEAR ENERGY, 2021, 156
  • [22] A Note on "Lie Symmetries of Inviscid Burgers Equation"
    Freire, Igor Leite
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (02) : 297 - 300
  • [23] A Note on “Lie Symmetries of Inviscid Burgers Equation”
    Igor Leite Freire
    Advances in Applied Clifford Algebras, 2012, 22 : 297 - 300
  • [24] Lie symmetries of Benjamin-Ono equation
    Zhao, Weidong
    Munir, Mobeen
    Murtaza, Ghulam
    Athar, Muhammad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 9496 - 9510
  • [25] Riemann's equation and Lie point symmetries
    Flessas, GP
    Leach, PGL
    PHYSICA SCRIPTA, 2006, 73 (04) : 377 - 383
  • [26] A Lie symmetries interpretation of the neutron diffusion equation
    Ramsey, Scott D.
    Remedes, Tyler J.
    Annals of Nuclear Energy, 2021, 156
  • [27] Global Lie Symmetries of the Heat and Schrodinger Equation
    Sepanski, Mark R.
    Stanke, Ronald J.
    JOURNAL OF LIE THEORY, 2010, 20 (03) : 543 - 580
  • [28] Symmetries of the Schrodinger equation and algebra/superalgebra duality
    Toppan, Francesco
    XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30), 2015, 597
  • [29] NONLOCAL LIE-BACKLUND SYMMETRIES AND OLVER SYMMETRIES OF THE KDV EQUATION
    LOU, SY
    HU, XB
    CHINESE PHYSICS LETTERS, 1993, 10 (10): : 577 - 580
  • [30] NEW SYMMETRIES AND THEIR LIE-ALGEBRA PROPERTIES FOR THE BURGERS EQUATIONS
    SUN, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18): : 3737 - 3742