CTE Method and Nonlocal Symmetries for a High-order Classical Boussinesq-Burgers Equation

被引:0
|
作者
Zuo, Jinming [1 ]
机构
[1] School of Mathematics and Statistics, Shandong University of Technology, Zibo,255049, China
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Bilinear form and new multi-soliton solutions of the classical Boussinesq-Burgers system
    Zhang, Cui-Cui
    Chen, Ai-Hua
    APPLIED MATHEMATICS LETTERS, 2016, 58 : 133 - 139
  • [42] Optimal systems, similarity reductions and new conservation laws for the classical Boussinesq-Burgers system
    Liu, Wenhao
    Zhang, Yufeng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (01):
  • [44] ON GENERAL HIGH-ORDER SOLITONS AND BREATHERS TO A NONLOCAL SCHRODINGER-BOUSSINESQ EQUATION WITH A PERIODIC LINE WAVES BACKGROUND
    Liu, Wei
    Rao, Jiguang
    Qiao, Xiaoyan
    ROMANIAN JOURNAL OF PHYSICS, 2020, 65 (7-8):
  • [45] HIGH-ORDER REGULARITY FOR SOLUTIONS OF THE INVISCID BURGERS-EQUATION
    DEVORE, RA
    LUCIER, BJ
    LECTURE NOTES IN MATHEMATICS, 1989, 1402 : 147 - 154
  • [46] A high-order Petrov-Galerkin finite element method for the classical Boussinesq wave model
    Avilez-Valente, Paulo
    Seabra-Santos, Femando J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 59 (09) : 969 - 1010
  • [47] HIGH-ORDER REGULARITY FOR SOLUTIONS OF THE INVISCID BURGERS-EQUATION
    DEVORE, RA
    LUCIER, BJ
    NONLINEAR HYPERBOLIC PROBLEMS /, 1989, 1402 : 147 - 154
  • [48] On assorted soliton wave solutions with the higher-order fractional Boussinesq-Burgers system
    Zafar, Asim
    Ijaz, Maliha
    Qaisar, Anoosha
    Ahmad, Daud
    Bekir, Ahmet
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (32):
  • [49] Quasi-periodic solution of the (2+1)-dimensional Boussinesq-Burgers soliton equation
    Zhang, JS
    Wu, YT
    Li, XM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 213 - 232
  • [50] CTE Solvability, Exact Solutions and Nonlocal Symmetries of the Sharma Tasso Olver Equation
    Pu Huan
    Jia Man
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 64 (06) : 623 - 629