Circumventing Kinetic Barriers to Metal Hydride Formation with Metal-Ligand Cooperativity

被引:0
|
作者
Montgomery, Charlotte L. [1 ]
Ertem, Mehmed Z. [2 ]
Chevalier, Leo [1 ]
Dempsey, Jillian L. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[2] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
MOLECULAR CATALYSTS; THERMODYNAMIC ACIDITY; HYDROGEN-PRODUCTION; COBALT COMPLEXES; PENDANT AMINES; H-2; PRODUCTION; H-BOND; ACETONITRILE-IMPLICATIONS; COORDINATION SPHERE; CARBON-DIOXIDE;
D O I
10.1021/jacs.4c01716
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the two-electron, one-proton mechanism of cobalt hydride formation for the conversion of [CoIIICp(PPh 2NBn 2)(CH3CN)]2+ to [HCoIIICp(PPh 2NBn 2)]+. This complex catalytically converts CO2 to formate under CO2 reduction conditions, with hydride formation as a key elementary step. Through a combination of electrochemical measurements, digital simulations, theoretical calculations, and additional mechanistic and thermochemical studies, we outline the explicit role of the PPh 2NBn 2 ligand in the proton-coupled electron transfer (PCET) reactivity that leads to hydride formation. We reveal three unique PCET mechanisms, and we show that the amine on the PPh 2NBn 2 ligand serves as a kinetically accessible protonation site en route to the thermodynamically favored cobalt hydride. Cyclic voltammograms recorded with proton sources that span a wide range of pK a values show four distinct regimes where the mechanism changes as a function of acid strength, acid concentration, and timescale between electrochemical steps. Peak shift analysis was used to determine proton transfer rate constants where applicable. This work highlights the astute choices that must be made when designing catalytic systems, including the basicity and kinetic accessibility of protonation sites, acid strength, acid concentration, and timescale between electron transfer steps, to maximize catalyst stability and efficiency.
引用
收藏
页码:30020 / 30032
页数:13
相关论文
共 50 条
  • [41] Metal-Ligand Redox Cooperativity in Cerium Amine-/Amido-Phenolate-Type Complexes
    Uruburo, Christian
    Y. P. Rupasinghe, D. M. Ramitha
    Gupta, Himanshu
    Knieser, Rachael M.
    Lopez, Lauren M.
    Furigay, Maxwell H.
    Higgins, Robert F.
    Pandey, Pragati
    Baxter, Makayla R.
    Carroll, Patrick J.
    Zeller, Matthias
    Bart, Suzanne C.
    Schelter, Eric J.
    INORGANIC CHEMISTRY, 2023, 63 (21) : 9418 - 9426
  • [42] Metal-metal and metal-ligand bond strengths in metal carbonyl clusters
    Hughes, AK
    Wade, K
    COORDINATION CHEMISTRY REVIEWS, 2000, 197 : 191 - 229
  • [43] N,O-chelates becoming unhinged. New perspectives in metal-ligand cooperativity
    Drover, Marcus
    Love, Jennifer
    Schafer, Laurel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [44] Metal-Ligand Cooperativity Promoting Sulfur Atom Transfer in Ferrous Complexes and Isolation of a Sulfurmethylenephosphorane Adduct
    Sorsche, Dieter
    Miehlich, Matthias E.
    Zolnhofer, Eva M.
    Carroll, Patrick J.
    Meyer, Karsten
    Mindiola, Daniel J.
    INORGANIC CHEMISTRY, 2018, 57 (18) : 11552 - 11559
  • [45] Metal-Ligand Cooperativity of the Calix[4]pyrrolato Aluminate: Triggerable C-C Bond Formation and Rate Control in Catalysis
    Ebner, Fabian
    Sigmund, Lukas Maximilian
    Greb, Lutz
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (39) : 17118 - 17124
  • [46] Visualization of Metal-to-Ligand and Ligand-to-Ligand Charge Transfer in Metal-Ligand Complexes
    Ding, Yong
    Guo, Jian-xiu
    Wang, Xiang-si
    Liu, Sha-sha
    Ma, Feng-cai
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2009, 22 (03) : 269 - 274
  • [47] Characterizing the Metal-Ligand Bond Strength via Vibrational Spectroscopy: The Metal-Ligand Electronic Parameter (MLEP)
    Kraka, Elfi
    Freindorf, Marek
    NEW DIRECTIONS IN THE MODELING OF ORGANOMETALLIC REACTIONS, 2020, 67 : 227 - 269
  • [48] Generalization of the Tolman electronic parameter: the metal-ligand electronic parameter and the intrinsic strength of the metal-ligand bond
    Cremer, Dieter
    Kraka, Elfi
    DALTON TRANSACTIONS, 2017, 46 (26) : 8323 - 8338
  • [49] BOND PROPERTIES OF METAL-LIGAND BONDS
    VERMA, UP
    PANDEY, AN
    MONATSHEFTE FUR CHEMIE, 1980, 111 (02): : 439 - 442
  • [50] Transition metal complexes of a new phosphine ligand featured with metal-ligand cooperativities
    Alhthlol, Latifah
    Nwangwa, Evidence
    Ding, Keying
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252