Circumventing Kinetic Barriers to Metal Hydride Formation with Metal-Ligand Cooperativity

被引:0
|
作者
Montgomery, Charlotte L. [1 ]
Ertem, Mehmed Z. [2 ]
Chevalier, Leo [1 ]
Dempsey, Jillian L. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[2] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
MOLECULAR CATALYSTS; THERMODYNAMIC ACIDITY; HYDROGEN-PRODUCTION; COBALT COMPLEXES; PENDANT AMINES; H-2; PRODUCTION; H-BOND; ACETONITRILE-IMPLICATIONS; COORDINATION SPHERE; CARBON-DIOXIDE;
D O I
10.1021/jacs.4c01716
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the two-electron, one-proton mechanism of cobalt hydride formation for the conversion of [CoIIICp(PPh 2NBn 2)(CH3CN)]2+ to [HCoIIICp(PPh 2NBn 2)]+. This complex catalytically converts CO2 to formate under CO2 reduction conditions, with hydride formation as a key elementary step. Through a combination of electrochemical measurements, digital simulations, theoretical calculations, and additional mechanistic and thermochemical studies, we outline the explicit role of the PPh 2NBn 2 ligand in the proton-coupled electron transfer (PCET) reactivity that leads to hydride formation. We reveal three unique PCET mechanisms, and we show that the amine on the PPh 2NBn 2 ligand serves as a kinetically accessible protonation site en route to the thermodynamically favored cobalt hydride. Cyclic voltammograms recorded with proton sources that span a wide range of pK a values show four distinct regimes where the mechanism changes as a function of acid strength, acid concentration, and timescale between electrochemical steps. Peak shift analysis was used to determine proton transfer rate constants where applicable. This work highlights the astute choices that must be made when designing catalytic systems, including the basicity and kinetic accessibility of protonation sites, acid strength, acid concentration, and timescale between electron transfer steps, to maximize catalyst stability and efficiency.
引用
收藏
页码:30020 / 30032
页数:13
相关论文
共 50 条
  • [1] Metal-ligand cooperativity in chemical electrosynthesis
    Czaikowski, Maia E.
    Anferov, Sophie W.
    Anderson, John S.
    CHEM CATALYSIS, 2024, 4 (03):
  • [2] COOPERATIVITY EFFECT IN METAL-LIGAND AND MACROMOLECULE LIGAND EQUILIBRIA
    BRAIBANTI, A
    DALLAVALLE, F
    FISICARO, E
    PASQUALI, M
    INORGANICA CHIMICA ACTA, 1986, 122 (02) : 135 - 144
  • [3] Metal-ligand cooperativity enables zero-valent metal transfer
    Riu, Martin-Louis Y.
    Shan, Jing-Ran
    Houk, K. N.
    Nava, Matthew
    CHEMICAL SCIENCE, 2025, 16 (09) : 3888 - 3894
  • [4] Metal-ligand cooperativity of a Co-P moiety
    Kim, Seji
    Lee, Yunho
    INORGANIC CHEMISTRY FRONTIERS, 2020, 7 (05): : 1172 - 1181
  • [5] Combining metal-metal cooperativity, metal-ligand cooperativity and chemical non-innocence in diiron carbonyl complexes
    van Beek, Cody B.
    van Leest, Nicolaas P.
    Lutz, Martin
    de Vos, Sander D.
    Gebbink, Robertus J. M. Klein
    de Bruin, Bas
    Broere, Daniel L. J.
    CHEMICAL SCIENCE, 2022, 13 (07) : 2094 - 2104
  • [6] Metal-Ligand Cooperativity of Phosphorus-Containing Pincer Systems
    Kim, Seji
    Kim, Yeong-Eun
    Lee, Yunho
    METAL-LIGAND CO-OPERATIVITY: CATALYSIS AND THE PINCER-METAL PLATFORM, 2021, 68 : 71 - 93
  • [7] Metal-ligand cooperativity with redox-active tetradentate ligands
    Durgaprasad, Gummadi
    Luna, Javier
    Spielvogel, Kyle
    Haas, Christian
    Shaw, Scott
    Daly, Scott
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [8] Ambiphilic Alcohol Dehydrogenation by BICAAC Mimicking Metal-Ligand Cooperativity
    Bansal, Surbhi
    Biswas, Ayanangshu
    Kundu, Abhishek
    Adhikari, Manu
    Singh, Sanjay
    Adhikari, Debashis
    ACS CATALYSIS, 2024, 14 (10): : 8087 - 8095
  • [9] Vanadium pyridonates: dimerization, redox behaviour, and metal-ligand cooperativity
    Griffin, Samuel E.
    Adamczyk, Olivia, V
    Schafer, Laurel L.
    DALTON TRANSACTIONS, 2022, 51 (38) : 14654 - 14663
  • [10] Parallels between Metal-Ligand Cooperativity and Frustrated Lewis Pairs
    Habraken, Evi R. M.
    Jupp, Andrew R.
    Brands, Maria B.
    Nieger, Martin
    Ehlers, Andreas W.
    Slootweg, J. Chris
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2019, 2019 (19) : 2436 - 2442