Ion temperature gradient mode mitigation by energetic particles, mediated by forced-driven zonal flows

被引:0
|
作者
Sama, J.N. [1 ]
Biancalani, A. [2 ]
Bottino, A. [3 ]
Del Sarto, D. [1 ]
Dumont, R.J. [4 ]
Di Giannatale, G. [5 ]
Ghizzo, A. [1 ]
Hayward-Schneider, T. [3 ]
Lauber, Ph. [3 ]
McMillan, B. [6 ]
Mishchenko, A. [7 ]
Muruggapan, M. [5 ]
Rettino, B. [3 ]
Rofman, B. [5 ]
Vannini, F. [3 ]
Villard, L. [5 ]
Wang, X. [3 ]
机构
[1] Université de Lorraine, CNRS, IJL, Nancy,54011, France
[2] Léonard de Vinci Pôle Universitaire, Research Center, Paris La Défense,92400, France
[3] Max Planck Institute for Plasma Physics, Garching,85748, Germany
[4] CEA, IRFM, Saint-Paul-lez-Durance,F-13108, France
[5] Swiss Plasma Center, EPFL, Lausanne,1015, Switzerland
[6] Center for Fusion, Space and Astrophysics, University of Warwick, Coventry,CV4 7AL, United Kingdom
[7] Max Planck Institute for Plasma Physics, Greifswald,17491, Germany
关键词
Aerodynamics - Positive ions - Vortex flow;
D O I
10.1063/5.0226833
中图分类号
学科分类号
摘要
In this work, we use the global electromagnetic and electrostatic gyro kinetic approaches to investigate the effects of zonal flows forced-driven by Alfvén modes due to their excitation by energetic particles on the dynamics of ITG (ion temperature gradient) instabilities. The equilibrium of the 92416 JET tokamak shot is considered. The linear, nonlinear Alfvén modes, and the zonal flow dynamics are investigated, and their respective radial structures and saturation levels are reported. ITG dynamics in the presence of the zonal flows excited by these Alfvén modes are also investigated. The zonal flows forced-driven by Alfvén modes can significantly impact the ITG dynamics. A zonal flow amplitude scan reveals the existence of an inverse relation between the zonal flow amplitude and the ITG growth rate. These results indicate that forced-driven zonal flows can be an important indirect part of turbulence mitigation due to the injection of energetic particles. © 2024 Author(s).
引用
收藏
相关论文
共 50 条
  • [21] Effects of parallel ion motion on zonal flow generation in ion-temperature-gradient mode turbulence
    Anderson, J.
    Li, J.
    Kishimoto, Y.
    PHYSICS OF PLASMAS, 2007, 14 (08)
  • [22] Generation of zonal flows by ion-temperature-gradient and related modes in the presence of neoclassical viscosity
    Mikhailovskii, A. B.
    Smolyakov, A. I.
    Kovalishen, E. A.
    Shirokov, M. S.
    Tsypin, V. S.
    Galvao, R. M. O.
    PHYSICS OF PLASMAS, 2006, 13 (05)
  • [23] Ion temperature gradient mode driven solitons and shocks in superthermal plasma
    Rehan, M.
    Zakir, U.
    Haque, Q.
    Hameed, G.
    CHINESE JOURNAL OF PHYSICS, 2020, 68 : 908 - 918
  • [24] Self-organization of zonal flows and isotropic eddies in toroidal electron temperature gradient driven turbulence
    Kawai, C.
    Idomura, Y.
    Ogawa, Y.
    Yamada, H.
    PHYSICS OF PLASMAS, 2020, 27 (08)
  • [25] Slablike ion temperature gradient driven mode in reversed shear tokamaks
    Idomura, Y
    Tokuda, S
    Kishimoto, Y
    NEW JOURNAL OF PHYSICS, 2002, 4 : 101.1 - 101.13
  • [26] Global structure of zonal flow and electromagnetic ion temperature gradient driven turbulence in tokamak plasmas
    Miyato, N
    Kishimoto, Y
    Li, J
    PHYSICS OF PLASMAS, 2004, 11 (12) : 5557 - 5564
  • [27] EFFECTS OF SHEARED FLOWS ON ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENT TRANSPORT
    HAMAGUCHI, S
    HORTON, W
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (02): : 319 - 328
  • [28] Magnetic shear effect on zonal flow generation in ion-temperature-gradient mode turbulence
    Lu He-Lin
    Chen Zhong-Yong
    Li Yue-Xun
    Yang Kai
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [29] Comparison of analytical models for zonal flow generation in ion-temperature-gradient mode turbulence
    Anderson, J.
    Miki, K.
    Uzawa, K.
    Li, J.
    Kishimoto, Y.
    THEORY OF FUSION PLASMAS, 2006, 871 : 277 - +
  • [30] Gyrokinetic simulations of zonal flows and ion temperature gradient turbulence in HL-2A ITB plasmas
    Xu, J. Q.
    Peng, X. D.
    Hao, G. Z.
    Chen, W.
    Li, J. Q.
    Qu, H. P.
    Li, J. C.
    Ren, G. Z.
    He, X. X.
    Li, Y. G.
    PHYSICS OF PLASMAS, 2022, 29 (01)