Phenotype driven molecular genetic test recommendation for diagnosing pediatric rare disorders

被引:0
|
作者
Chen, Fangyi [1 ]
Ahimaz, Priyanka [2 ,3 ]
Nguyen, Quan M. [4 ,5 ]
Lewis, Rachel [2 ]
Chung, Wendy K. [6 ]
Ta, Casey N. [1 ]
Szigety, Katherine M. [7 ]
Sheppard, Sarah E. [7 ]
Campbell, Ian M. [7 ]
Wang, Kai [4 ]
Weng, Chunhua [1 ]
Liu, Cong [6 ]
机构
[1] Columbia Univ, Dept Biomed Informat, New York, NY 10032 USA
[2] Columbia Univ, Dept Pediat, New York, NY USA
[3] Columbia Univ, Inst Genom Med, New York, NY USA
[4] Childrens Hosp Philadelphia, Raymond G Perelman Ctr Cellular & Mol Therapeut, Philadelphia, PA USA
[5] Univ Penn, Dept Bioengn, Philadelphia, PA USA
[6] Harvard Med Sch, Boston Childrens Hosp, Dept Pediat, Div Genet & Genom, Boston, MA 02445 USA
[7] Univ Penn, Childrens Hosp Philadelphia, Perelman Sch Med, Div Human Genet,Dept Pediat, Philadelphia, PA USA
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
基金
美国国家卫生研究院;
关键词
MEDICAL-RECORD DATA; INCIDENTAL FINDINGS; AMERICAN-COLLEGE; EXOME; DOCUMENTATION; ASSOCIATION; VARIANTS; CHILDREN; DISEASES; TOOL;
D O I
10.1038/s41746-024-01331-1
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Patients with rare diseases often experience prolonged diagnostic delays. Ordering appropriate genetic tests is crucial yet challenging, especially for general pediatricians without genetic expertise. Recent American College of Medical Genetics (ACMG) guidelines embrace early use of exome sequencing (ES) or genome sequencing (GS) for conditions like congenital anomalies or developmental delays while still recommend gene panels for patients exhibiting strong manifestations of a specific disease. Recognizing the difficulty in navigating these options, we developed a machine learning model trained on 1005 patient records from Columbia University Irving Medical Center to recommend appropriate genetic tests based on the phenotype information. The model achieved a remarkable performance with an AUROC of 0.823 and AUPRC of 0.918, aligning closely with decisions made by genetic specialists, and demonstrated strong generalizability (AUROC:0.77, AUPRC: 0.816) in an external cohort, indicating its potential value for general pediatricians to expedite rare disease diagnosis by enhancing genetic test ordering.
引用
收藏
页数:12
相关论文
共 40 条
  • [31] A data-driven architecture using natural language processing to improve phenotyping efficiency and accelerate genetic diagnoses of rare disorders
    Parikh, Jignesh R.
    Genetti, Casie A.
    Aykanat, Asli
    Brownstein, Catherine A.
    Schmitz-Abe, Klaus
    Danowski, Morgan
    Quitadomo, Andrew
    Madden, Jill A.
    Yacoubian, Calum
    Gain, Richard
    Williams, Tessa
    Meskell, Mary
    Brown, Andrew
    Frith, Alison
    Rockowitz, Shira
    Sliz, Piotr
    Agrawal, Pankaj B.
    Defay, Thomas
    McDonagh, Paul
    Reynders, John
    Lefebvre, Sebastien
    Beggs, Alan H.
    HUMAN GENETICS AND GENOMICS ADVANCES, 2021, 2 (03):
  • [32] Technical standards and guidelines: Molecular genetic testing for ultra-rare disorders (vol 8, pg 572, 2005)
    Maddalena, A.
    Bale, S.
    Das, S.
    Grody, W.
    Richards, S.
    GENETICS IN MEDICINE, 2006, 8 (11) : 735 - 735
  • [33] Technical standards and guidelines: Molecular genetic testing for ultra-rare disorders (vol 7, pg 571, 2005)
    Astbury, Caroline
    Benkendorf, Judith
    GENETICS IN MEDICINE, 2022, 24 (01) : 253 - +
  • [34] Diagnostic yield of clinical exome sequencing as a first-tier genetic test for the diagnosis of genetic disorders in pediatric patients: results from a referral center study
    Jean-Philippe Mergnac
    Arnaud Wiedemann
    Céline Chery
    Jean-Marie Ravel
    Farès Namour
    Jean-Louis Guéant
    François Feillet
    Abderrahim Oussalah
    Human Genetics, 2022, 141 : 1269 - 1278
  • [35] Diagnostic yield of clinical exome sequencing as a first-tier genetic test for the diagnosis of genetic disorders in pediatric patients: results from a referral center study
    Mergnac, Jean-Philippe
    Wiedemann, Arnaud
    Chery, Celine
    Ravel, Jean-Marie
    Namour, Fares
    Gueant, Jean-Louis
    Feillet, Francois
    Oussalah, Abderrahim
    HUMAN GENETICS, 2022, 141 (07) : 1269 - 1278
  • [36] From genotype to phenotype. Molecular genetic analysis in intersex disorders [Vom Genotyp zum Phanotyp. Molekulargenetische Diagnostik bei Intersexualitat]
    Hiort O.
    Monatsschrift Kinderheilkunde, 1998, 146 (2) : 86 - 91
  • [37] Phenotype-driven variant filtration strategy in exome sequencing toward a high diagnostic yield and identification of 85 novel variants in 400 patients with rare Mendelian disorders
    Marinakis, Nikolaos M.
    Svingou, Maria
    Veltra, Danai
    Kekou, Kyriaki
    Sofocleous, Christalena
    Tilemis, Faidon-Nikolaos
    Kosma, Konstantina
    Tsoutsou, Eirini
    Fryssira, Helen
    Traeger-Synodinos, Joanne
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2021, 185 (08) : 2561 - 2571
  • [38] Using CADA - a phenotype-driven gene prioritization tool for custom panel definition in diagnostics of rare disorders using exome sequencing - a retrospective analysis of 380 patients
    Bergant, Gaber
    Maver, Ales
    Ziberna, Klemen
    Peterlin, Borut
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 616 - 617
  • [39] Detection of IL-1 family rare genetic variants in metabolic disorders using single-molecule Molecular Inversion Probes (smMIPs)
    Mirea, A.
    van Deuren, R. C.
    Toonen, E. J. M.
    Arts, P.
    Steehouwer, M.
    van den Munkhof, I.
    Schraa, K.
    Jaeger, M.
    van de Veerdonk, F. L.
    Dinarello, C. A.
    Netea, M. G.
    Riksen, N. P.
    Tack, C. J.
    Hoischen, A.
    Joosten, L. A. B.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1647 - 1648
  • [40] Matching whole genomes to rare genetic disorders: Identification of potential causative variants using phenotype-weighted knowledge in the CAGI SickKids5 clinical genomes challenge
    Pal, Lipika R.
    Kundu, Kunal
    Yin, Yizhou
    Moult, John
    HUMAN MUTATION, 2020, 41 (02) : 347 - 362