Experimental study on the effect of THF/DTAC and adsorption coupling on the separation and carbon capture process of CH4/CO2 gas mixture by hydrate-based method

被引:0
|
作者
Zhang, Xuemin [1 ,2 ,3 ]
He, Jiajing [1 ,2 ,3 ]
Sun, Huan [1 ,2 ,3 ]
Liu, Qingqing [1 ,2 ,3 ]
Li, Jinping [1 ,2 ,3 ]
Yin, Shaoqi [1 ,2 ,3 ]
Wu, Qingbai [1 ,4 ]
Zhang, Peng [4 ]
机构
[1] College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou,730050, China
[2] Key Laboratory of Multi-supply System with Solar Energy and Biomass, Gansu Province, Lanzhou,730050, China
[3] Collaborative Innovation Center for Supporting Technology of Northwestern Low-carbon Towns, Lanzhou,730050, China
[4] State Key Laboratory of Permafrost Engineering, Northwest Institute of Ecological and Environmental Resources, Chinese Academy of Sciences, Lanzhou,730000, China
来源
基金
中国国家自然科学基金;
关键词
Carbon capture - Carbon capture and storage - Carbon sequestration - Direct air capture - Gas adsorption - Gas fuel purification - Gas hydrates - Hydration;
D O I
10.1016/j.jece.2024.114832
中图分类号
学科分类号
摘要
The mixed gas separation technology of the gas hydrate-based method can realize the efficient capture and separation of CO2 from biogas, thus realizing the efficient purification of biogas. This study systematically examined the formation of CH4/CO2 mixed gas hydrate and the capture and separation properties of CO2 gas using THF/DTAC and adsorption coupling. The effects of different initial pressures, initial temperatures, and initial component ratios (40/60, 55/45, and 67/33) on the gas consumption, CO2 separation factor, CO2 hydration rate, CH4 recovery rate, and pressure drop rate of the CH4/CO2 mixed gas separation process were deeply analyzed. The findings demonstrated that, in the presence of 1 mol% THF and 0.5 wt% DTAC solution, the ideal temperature condition was 283.65 K at three distinct initial CH4 concentrations of 40 %, 55 %, and 67 %. The corresponding optimal separation pressures were 3 MPa, 4 MPa, and 4 MPa, respectively. Meanwhile, the CH4/CO2 gas mixture's CO2 molecules were more selectively picked up by the reaction system. At an initial pressure of 5 MPa, the rapid formation of hydrates reduces the subsequent sustained trapping of CO2 molecules, which in turn reduces the total gas consumption. Using activated carbon (16.67 wt%) as a basis, the quantitative impact of adsorption-hydration on the CH4/CO2 gas mixtures' separation process was further examined. With activated carbon present, the reaction system was able to increase CO2 intake while decreasing CH4 molecule uptake. Finally, a new model for CH4/CO2 mixed gas separation by multistage hydration method was proposed. © 2024
引用
收藏
相关论文
共 50 条
  • [11] Computer simulation study of the adsorption/separation process of CO2/CH4 mixture on natural zeolites
    Li, Zhi
    Peng, Cheng
    2009 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT TECHNOLOGY, VOL 3, PROCEEDINGS, 2009, : 28 - +
  • [12] Experimental Study on the Influence of the Temperature and Gas-Liquid Ratio on Hydrate-Based CO2 Separation from the CH4-CO2 Gas Mixture under Static Conditions
    Zhang, Xuemin
    Yin, Shaoqi
    He, Jiajing
    Liu, Qingqing
    Li, Jinping
    Wang, Yingmei
    Wu, Qingbai
    Energy and Fuels, 2024, 38 (01): : 450 - 461
  • [13] Adsorption Separation of CO2/CH4 Gas Mixture on Carbon Molecular Sieves Modified by Potassium Carbonate
    Liu, Dingding
    Yi, Honghong
    Tang, Xiaolong
    Zhao, Shunzheng
    Wang, Zhixiang
    Gao, Fengyu
    Li, Qian
    Zhao, Bin
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2016, 61 (07): : 2197 - 2201
  • [14] Effect of Gas Exchange Interval on CH4 Recovery Efficiency and Study of Mechanism of CH4 Hydrate Replacement by CO2 Mixture
    Ding, Ya-Long
    Wang, Hua-Qin
    Lv, Tao
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [15] Experimental and process simulation of hydrate-based CO2 capture from biogas
    Li, Qi
    Fan, Shuanshi
    Chen, Qiuxiong
    Yang, Guang
    Chen, Yunwen
    Li, Luling
    Li, Gang
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2019, 72
  • [16] Experimental Study on the Influence of the Temperature and Gas-Liquid Ratio on Hydrate-Based CO2 Separation from the CH4-CO2 Gas Mixture under Static Conditions
    Zhang, Xuemin
    Yin, Shaoqi
    He, Jiajing
    Liu, Qingqing
    Li, Jinping
    Wang, Yingmei
    Wu, Qingbai
    ENERGY & FUELS, 2023, 38 (01) : 450 - 461
  • [17] Enhanced separation of carbon dioxide from a CO2 + CH4 gas mixture using a hybrid adsorption-hydrate formation process in the presence of coal particles
    Li, Zheng
    Zhong, Dong-Liang
    Lu, Yi-Yu
    Wang, Jia-Le
    Qing, Sheng-Lan
    Yan, Jin
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 35 : 1472 - 1479
  • [18] Research progress of hydrate-based CO2 separation and capture from gas mixtures
    Xu, Chun-Gang
    Li, Xiao-Sen
    RSC ADVANCES, 2014, 4 (35): : 18301 - 18316
  • [19] Study on the adsorption of CH4, CO2 and various CH4/CO2 mixture gases on shale
    Du, Xidong
    Cheng, Yugang
    Liu, Zhenjian
    Hou, Zhenkun
    Wu, Tengfei
    Lei, Ruide
    Shu, Couxian
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 5165 - 5178
  • [20] Adsorption separation of CO2/CH4 gas mixture on the commercial zeolites at atmospheric pressure
    Yi, H. (yhhtxl@163.com), 1600, Elsevier B.V., Netherlands (229):