Accelerating Li-Ion Diffusion in LiFePO4 by Polyanion Lattice Engineering

被引:3
|
作者
Wang, Xinxin [1 ]
Yu, Anyang [2 ]
Jiang, Tian [3 ]
Yuan, Shijun [1 ]
Fan, Qi [2 ]
Xu, Qingyu [1 ,4 ,5 ]
机构
[1] Southeast Univ, Sch Phys, Jiulonghu Campus, Nanjing 211189, Peoples R China
[2] Southeast Univ, Sch Mat Sci & Engn, Jiulonghu Campus, Nanjing 211189, Peoples R China
[3] Southeast Univ, Sch Chem & Chem Engn, Jiulonghu Campus, Nanjing 211189, Peoples R China
[4] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[5] Southeast Univ, Sch Phys, Key Lab Quantum Mat & Devices, Minist Educ, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
lattice engineering; LiFePO4; Li-ion diffusion; polyanion substitution; ELECTRICAL-PROPERTIES; CATHODE MATERIALS; LITHIUM; PERFORMANCE; GRAPHENE; BATTERY; COMPOSITES; CAPACITY; STORAGE; FE2O3;
D O I
10.1002/adma.202410482
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the widespread commercialization of LiFePO4 as cathodes in lithium-ion batteries, the rigid 1D Li-ion diffusion channel along the [010] direction strongly limits its fast charge and discharge performance. Herein, lattice engineering is developed by the planar triangle BO33- substitution on tetrahedron PO43- to induce flexibility in the Li-ion diffusion channels, which are broadened simultaneously. The planar structure of BO33- may further provide additional paths between the channels. With these synergetic contributions, LiFe(PO4)(0.98)(BO3)(0.02) shows the best performance, which delivers the high-rate capacity (66.8 mAh g(-1) at 50 C) and long cycle stability (ultra-low capacity loss of 0.003% every cycle at 10 C) at 25 degrees C. Furthermore, excellent rate performance (34.0 mAh g(-1) at 40 C) and capacity retention (no capacity loss after 2500 cycles at 10 C) at -20 degrees C are realized.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Preparation and characterization of LiFePO4/Ag composite for Li-ion batteries
    Chen, YK
    Okada, S
    Yamaki, J
    COMPOSITE INTERFACES, 2004, 11 (03) : 277 - 283
  • [12] Development and challenge of LiFePO4 cathode materials for Li-ion batteries
    Jiang, Zhi-Jun
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (03): : 365 - 368
  • [13] Electrochemical performance of LiFePO4 cathode material for Li-ion battery
    LI Shuzhong1)
    RareMetals, 2006, (S1) : 62 - 66
  • [14] Synthesis of LiFePO4 nanoplatelets as cathode materials for Li-ion batteries
    Kapaev R.R.
    Novikova S.A.
    Kulova T.L.
    Skundin A.M.
    Yaroslavtsev A.B.
    Nanotechnologies in Russia, 2016, 11 (11-12): : 757 - 760
  • [15] PREPARATION AND SILVER MODIFICATION OF LIFEPO4/C FOR LI-ION BATTERIES
    Wang, Lian-Liang
    Ma, Pei-Hua
    Wen, Xian-Ming
    Zhang, Kun
    Deng, Xiao-Chuan
    JOURNAL OF THE CHILEAN CHEMICAL SOCIETY, 2009, 54 (02): : 144 - 146
  • [16] Probing the failure mechanism of nanoscale LiFePO4 for Li-ion batteries
    Gu, Meng
    Shi, Wei
    Zheng, Jianming
    Yan, Pengfei
    Zhang, Ji-guang
    Wang, Chongmin
    APPLIED PHYSICS LETTERS, 2015, 106 (20)
  • [17] LiFePO4 safe Li-ion polymer batteries for clean environment
    Zaghib, K
    Charest, P
    Guerfi, A
    Shim, J
    Perrier, M
    Striebel, K
    JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 380 - 385
  • [18] Is LiFePO4 stable in water?: Toward greener li-ion batteries
    Porcher, W.
    Moreau, P.
    Lestriez, B.
    Jouanneau, S.
    Guyomard, D.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (01) : A4 - A8
  • [19] Electrochemical performance of LiFePO4/GO composite for Li-ion batteries
    Rajoba, Swapnil J.
    Jadhav, Lata D.
    Kalubarme, Ramchandra S.
    Patil, Pramod S.
    Varma, S.
    Wani, B. N.
    CERAMICS INTERNATIONAL, 2018, 44 (06) : 6886 - 6893
  • [20] Study of LiFePO4 Electrode Morphology for Li-Ion Battery Performance
    Buga, Mihaela
    Rizoiu, Alexandru
    Bubulinca, Constantin
    Badea, Silviu
    Balan, Mihai
    Ciocan, Alexandru
    REVISTA DE CHIMIE, 2018, 69 (03): : 549 - 552