Physics-Informed Gas Lifting Oil Well Modelling using Neural Ordinary Differential Equations

被引:1
|
作者
Ban, Zhe [1 ]
Pfeiffer, Carlos [1 ]
机构
[1] University of South-Eastern Norway, Kjølnes Ring 56, Porsgrunn,3918, United States
关键词
Compendex;
D O I
10.1002/iis2.13046
中图分类号
学科分类号
摘要
Modeling languages
引用
收藏
页码:689 / 703
相关论文
共 50 条
  • [31] Fluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domains
    Bublik, Ondrej
    Heidler, Vaclav
    Pecka, Ales
    Vimmr, Jan
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2023, 37 (01) : 67 - 81
  • [32] Seismic Inversion Based on Acoustic Wave Equations Using Physics-Informed Neural Network
    Zhang, Yijie
    Zhu, Xueyu
    Gao, Jinghuai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [33] A new method to compute the blood flow equations using the physics-informed neural operator
    Li, Lingfeng
    Tai, Xue-Cheng
    Chan, Raymond Hon-Fu
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 519
  • [34] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [35] Discontinuity Computing Using Physics-Informed Neural Networks
    Li Liu
    Shengping Liu
    Hui Xie
    Fansheng Xiong
    Tengchao Yu
    Mengjuan Xiao
    Lufeng Liu
    Heng Yong
    [J]. Journal of Scientific Computing, 2024, 98
  • [36] Predicting Voltammetry Using Physics-Informed Neural Networks
    Chen, Haotian
    Katelhon, Enno
    Compton, Richard G.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (02): : 536 - 543
  • [37] Discontinuity Computing Using Physics-Informed Neural Networks
    Liu, Li
    Liu, Shengping
    Xie, Hui
    Xiong, Fansheng
    Yu, Tengchao
    Xiao, Mengjuan
    Liu, Lufeng
    Yong, Heng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [38] APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
    Chen, Jialei
    Chen, Zhehui
    Zhang, Chuck
    Wu, C. F. Jeff
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 481 - 506
  • [39] Physics-informed variational inference for uncertainty quantification of stochastic differential equations
    Shin, Hyomin
    Choi, Minseok
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 487
  • [40] A novel optimization-based physics-informed neural network scheme for solving fractional differential equations
    Sivalingam S M
    Pushpendra Kumar
    V. Govindaraj
    [J]. Engineering with Computers, 2024, 40 : 855 - 865