The relationship between electronic behavior of single atom catalysts and CO2 reduction to oxygenates

被引:0
|
作者
Cao, Fenghai [1 ]
Liu, Guangbo [2 ,3 ]
Wang, Xianbiao [1 ]
Tan, Li [1 ]
Tsubaki, Noritatsu [2 ]
机构
[1] Fuzhou Univ, Inst Mol Catalysis & Situ Operando Studies, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China
[2] Univ Toyama, Sch Engn, Dept Appl Chem, Gofuku 3190, Toyama 9308555, Japan
[3] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
关键词
Single-atom catalysts; Electronic behavior; CO; Methanol; Ethanol; Photo-catalysis; Thermal catalysis; Electro-catalysis; CO2; reduction; EFFICIENT ELECTROREDUCTION; SELECTIVE HYDROGENATION; ACTIVE-SITES; METAL; CU; NI; ENVIRONMENT; CONVERSION; STRATEGY; METHANOL;
D O I
10.1016/j.enchem.2024.100141
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom catalysts (SACs), with 100% atomic efficiency and distinctive electronic properties, show excellent catalytic performance for CO2 reduction to oxygenates. However, the electronic structure of active sites and key intermediates undergo continuous changes during the reaction on SACs. It is challenging to explain these phenomena through structure-activity relationship. Herein, the "electronic behavior" elucidates the dynamic nature of electronic interactions between active sites and key intermediates. In this review, we invesitgate the transformation of the electronic structure within the CO2 molecule and the active site of SACs during CO2 activation, elucidating the complex interplay between these two entities. Then, we delve into the electronic change processes involved in thermal, electro-, and photo-catalytic CO2 conversion, providing in-depth discussions. Additionally, the influence of the catalyst's electronic behavior on the structure-activity relationship is delineated with precision. At last, the challenges and future perspectives of electronic behavior for SACs are outlined.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Applications of Single-atom Catalysts in CO2 Conversion
    Qin Yongji
    Luo Jun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (09):
  • [42] Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO2 reduction reaction
    Wang, Yu
    Liu, Tianyang
    Li, Yafei
    CHEMICAL SCIENCE, 2022, 13 (21) : 6366 - 6372
  • [43] Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO2
    Doherty, Francis
    Wang, Hui
    Yang, Ming
    Goldsmith, Bryan R.
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (17) : 5772 - 5791
  • [44] Single-Atom Catalysts and Dual-Atom Catalysts for CO2 Electroreduction: Competition or Cooperation?
    Shao, Yueyue
    Yuan, Qunhui
    Zhou, Jia
    SMALL, 2023, 19 (40)
  • [45] Single Atom Catalysts for Selective Methane Oxidation to Oxygenates
    Kumar, Pawan
    Al-Attas, Tareq A.
    Hu, Jinguang
    Kibria, Md Golam
    ACS NANO, 2022, 16 (06) : 8557 - 8618
  • [46] Electrochemical Reduction of CO2 via Single-Atom Catalysts Supported on α-In2Se3
    Yang, Yun
    Liu, Shixi
    Fu, Gang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (26): : 6110 - 6118
  • [47] Structural rule of N-coordinated single-atom catalysts for electrochemical CO2 reduction
    Lou, Zhenxin
    Li, Wenjing
    Yuan, Haiyang
    Hou, Yu
    Yang, Huagui
    Wang, Haifeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) : 3585 - 3594
  • [48] Highly efficient and stable indium single-atom catalysts for electrocatalytic reduction of CO2 to formate
    Xu, Dafu
    Xu, Yan
    Wang, Haixia
    Qiu, Xiaoqing
    CHEMICAL COMMUNICATIONS, 2022, 58 (18) : 3007 - 3010
  • [49] A universal strategy for the synthesis of transition metal single atom catalysts toward electrochemical CO2 reduction
    Li, Bowen
    Liang, Yan
    Zhu, Yinlong
    CHEMICAL COMMUNICATIONS, 2024, 60 (84) : 12217 - 12220
  • [50] Beyond single-atom catalysts: Exploration of Cu dimer and trimer for CO2 reduction to methane
    Yang, Jing
    Liu, Ximeng
    Yuan, Hao
    Sun, Jianguo
    Li, Lidao
    Goh, Kuan Eng Johnson
    Yu, Zhi Gen
    Xue, Junmin
    Wang, John
    Zhang, Yong-Wei
    APPLIED CATALYSIS A-GENERAL, 2022, 642