Schizophrenia diagnosis based on diverse epoch size resting-state EEG using machine learning

被引:0
|
作者
Alazzawı, Athar [1 ]
Aljumaili, Saif [1 ]
Duru, Adil Deniz [2 ]
Uçan, Osman Nuri [1 ]
Bayat, Oğuz [1 ]
Coelho, Paulo Jorge [3 ,4 ]
Pires, Ivan Miguel [5 ]
机构
[1] Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altinbaş University, Istanbul, Turkey
[2] Neuroscience and Psychology Research in Sports Lab, Faculty of Sport Science, Marmara University Istanbul, Istanbul, Turkey
[3] Polytechnic Institute of Leiria, Leiria, Portugal
[4] Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal
[5] Instituto de Telecomunicações, Escola Superior de Tecnologia e Gestão de Águeda, Universidade de Aveiro, Águeda, Portugal
关键词
Compendex;
D O I
10.7717/PEERJ-CS.2170
中图分类号
学科分类号
摘要
Additive noise - Feature Selection - Gaussian noise (electronic) - Image coding - Image compression - Image segmentation - Image texture - Image thinning - Nearest neighbor search - Support vector machines
引用
收藏
相关论文
共 50 条
  • [31] Machine Learning - based Diagnosis Of Autism Spectrum Disorder Using Resting-state Functional Magnetic Resonance Imaging Data
    Nguyen, Viet Dung
    Do, Tin Minh Phuong
    2023 1ST INTERNATIONAL CONFERENCE ON HEALTH SCIENCE AND TECHNOLOGY, ICHST 2023, 2023,
  • [32] Recognition of the Multi-class Schizophrenia Based on the Resting-State EEG Network Topology
    Li, Fali
    Jiang, Lin
    Liao, Yuanyuan
    Li, Cunbo
    Zhang, Qi
    Zhang, Shu
    Zhang, Yangsong
    Kang, Li
    Li, Rong
    Yao, Dezhong
    Yin, Gang
    Xu, Peng
    Dai, Jing
    BRAIN TOPOGRAPHY, 2022, 35 (04) : 495 - 506
  • [33] Recognition of the Multi-class Schizophrenia Based on the Resting-State EEG Network Topology
    Fali Li
    Lin Jiang
    Yuanyuan Liao
    Cunbo Li
    Qi Zhang
    Shu Zhang
    Yangsong Zhang
    Li Kang
    Rong Li
    Dezhong Yao
    Gang Yin
    Peng Xu
    Jing Dai
    Brain Topography, 2022, 35 : 495 - 506
  • [34] Classification of upper limb impairment in acute stroke patients using resting-state EEG markers and machine learning
    Lassi, Michael
    Bandini, Andrea
    Spina, Vincenzo
    Azzollini, Valentina
    Dalise, Stefania
    Mazzoni, Alberto
    Chisari, Carmelo
    Micera, Silvestro
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [35] Discriminating between bipolar and major depressive disorder using a machine learning approach and resting-state EEG data
    Ravan, M.
    Noroozi, A.
    Sanchez, M. Margarette
    Borden, L.
    Alam, N.
    Flor-Henry, P.
    Hasey, G.
    CLINICAL NEUROPHYSIOLOGY, 2023, 146 : 30 - 39
  • [36] Machine Learning Supervised Classification Methodology for Autism Spectrum Disorder Based on Resting-State Electroencephalography (EEG) Signals
    Bhaskarachary, C.
    Najafabadi, A. Jahanian
    Godde, B.
    2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,
  • [37] An ensemble learning model for continuous cognition assessment based on resting-state EEG
    Sun, Jingnan
    Sun, Yike
    Shen, Anruo
    Li, Yunxia
    Gao, Xiaorong
    Lu, Bai
    NPJ AGING, 2024, 10 (01):
  • [38] An ensemble learning model for continuous cognition assessment based on resting-state EEG
    Jingnan Sun
    Yike Sun
    Anruo Shen
    Yunxia Li
    Xiaorong Gao
    Bai Lu
    npj Aging, 10
  • [39] Biomarkers for Prediction of Schizophrenia: Insights From Resting-State EEG Microstates
    Luo, Yu
    Tian, Qing
    Wang, Changming
    Zhang, Ke
    Wang, Chuanyue
    Zhang, Jicong
    IEEE ACCESS, 2020, 8 : 213078 - 213093
  • [40] Schizophrenia, dopamine and eeg resting-state functional connectivity: A systematic review
    Mackintosh, A.
    Golz, L.
    Andreou, C.
    EUROPEAN PSYCHIATRY, 2018, 48 : S322 - S322