Multi-channel nonreciprocal radiation of transverse electric wave with photonic crystal heterostructure

被引:1
|
作者
Liang, Guoyu [1 ]
Wang, Bo [2 ,3 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Guangdong Prov Key Lab Sensing Phys & Syst Integra, Guangzhou 510006, Peoples R China
[3] Chinese Acad Sci, Key Lab Biomed Imaging Sci & Syst, Shenzhen 518055, Peoples R China
关键词
THERMAL-RADIATION; REFLECTION;
D O I
10.1063/5.0238096
中图分类号
O59 [应用物理学];
学科分类号
摘要
An apparatus that accomplishes productive energy conversion by breaking conventional Kirchhoff's law is the nonreciprocal thermal emitter. Previous research universally focused on the nonreciprocal thermal emitter operated under transverse magnetic wave. The nonreciprocal thermal radiation proposed is operated under transverse electric (TE) wave, filling the gap in previous research. Meanwhile, the emitter, utilizing a photonic crystal (PC) heterostructure scheme composed of two one-dimensional PCs and an Al basement, accomplishes multi-channel nonreciprocal thermal radiation. With the external magnetic field of 3T, the emitter displays nonreciprocity behavior at bands of 15.933, 16.248, and 16.527 mu m. Furthermore, under alternative sets of structural parameters, the structure can achieve four-port nonreciprocal radiation at bands of 16.437, 16.804, 17.139, and 17.478 mu m. Both operating states indicate that the heterostructure under the magnetic field of 3 T exhibits nonreciprocal radiation performance for the TE wave. In addition, the exploration of the flat plate structure (IG)(n)(GI)M-m shows that this scheme has multi-band nonreciprocity in TE wave.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization
    Sakai, Kyosuke
    Yue, Jianglin
    Noda, Susumu
    OPTICS EXPRESS, 2008, 16 (09) : 6033 - 6040
  • [32] Simultaneous Multi-Channel Microwave Photonic Signal Processing
    Chen, Lawrence R.
    Moslemi, Parisa
    Ma, Ming
    Adams, Rhys
    PHOTONICS, 2017, 4 (04)
  • [33] Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal
    Takano, H
    Song, BS
    Asano, T
    Noda, S
    OPTICS EXPRESS, 2006, 14 (08) : 3491 - 3496
  • [34] Performance Analysis of Three-Wavelength Multi-Channel Photonic Crystal Filters of Different Sizes
    Liu, Wei
    Zhang, Laisheng
    Zhang, Fan
    CRYSTALS, 2022, 12 (01)
  • [35] Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber
    Petersen, Martin Nordal
    Scolari, Lara
    Tokle, Torger
    Alkeskjold, Thomas Tanggaard
    Gauza, Sebastian
    Wu, Shin-Tson
    Bjarklev, Anders
    OPTICS EXPRESS, 2008, 16 (24): : 20067 - 20072
  • [36] Multi-channel surface-enhanced Raman scattering probe based on photonic crystal fiber
    Yan, He
    Zhang, Zhonghuan
    Liu, Jie
    Li, Mingshan
    Liao, Songsong
    Yang, Changxi
    Hou, Lantian
    FIBER OPTIC SENSORS AND APPLICATIONS VI, 2009, 7316
  • [37] Multi-channel terahertz wavelength division demultiplexer with defects-coupled photonic crystal waveguide
    Li, Shaopeng
    Liu, Hongjun
    Sun, Qibing
    Huang, Nan
    JOURNAL OF MODERN OPTICS, 2016, 63 (10) : 955 - 960
  • [38] Theoretical Comparative Analysis of BER in Multi-Channel Systems With Strip and Photonic Crystal Silicon Waveguides
    You, Jie
    Lavdas, Spyros
    Panoiu, Nicolae C.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2016, 22 (02) : 63 - 72
  • [39] Photonic crystal multi-channel drop filters with Fabry-Perot microcavity reflection feedback
    Li, L.
    Liu, G. Q.
    Chen, Y. H.
    Tang, F. L.
    Huang, K.
    Gong, L. X.
    OPTIK, 2013, 124 (17): : 2608 - 2611
  • [40] Multi-Channel Photonic Crystal Fiber Based Surface Plasmon Resonance Sensor for Multi-Analyte Sensing
    Yasli, Ahmet
    Ademgil, Huseyin
    Haxha, Shyqyri
    Aggoun, Amar
    IEEE PHOTONICS JOURNAL, 2020, 12 (01):