Measuring Bipartite Spin Correlations of Lattice-Trapped Dipolar Atoms

被引:0
|
作者
Aziz Alaoui, Youssef [1 ,2 ]
Muleady, Sean R. [3 ,4 ,5 ,6 ]
Chaparro, Edwin [3 ,4 ]
Trifa, Youssef [7 ]
Rey, Ana Maria [3 ,4 ]
Roscilde, Tommaso [7 ]
Laburthe-Tolra, Bruno [1 ,2 ]
Vernac, Laurent [1 ,2 ]
机构
[1] Université Sorbonne Paris Nord, Laboratoire de Physique des Lasers, Villetaneuse,F-93430, France
[2] CNRS, UMR 7538, LPL, Villetaneuse,F-93430, France
[3] JILA, NIST, Department of Physics, University of Colorado, Boulder, United States
[4] Center for Theory of Quantum Matter, University of Colorado, Boulder,CO,80309, United States
[5] Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park,MD,20742, United States
[6] Joint Quantum Institute, NIST, University of Maryland, College Park,MD,20742, United States
[7] Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, Lyon,F-69342, France
基金
美国国家科学基金会;
关键词
Crystal atomic structure - Crystal lattices - Optical correlation - Spin dynamics - Strain measurement;
D O I
10.1103/PhysRevLett.133.203401
中图分类号
学科分类号
摘要
We demonstrate a bipartition technique using a superlattice architecture to access correlations between alternating planes of a mesoscopic array of spin-3 chromium atoms trapped in a 3D optical lattice. Using this method, we observe that out-of-equilibrium dynamics driven by long-range dipolar interactions lead to spin anticorrelations between the two spatially separated subsystems. Our bipartite measurements reveal a subtle interplay between the anisotropy of the 3D dipolar interactions and that of the lattice structure, without requiring single-site addressing. We compare our results to theoretical predictions based on a truncated cumulant expansion and a new cluster semiclassical method that we use to investigate correlations at the microscopic scale. Comparison with a high-temperature analytical model reveals quantum thermalization at a high negative spin temperature. © 2024 us 2024 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [31] DIPOLAR SPIN-LATTICE RELAXATION MEASUREMENT BY SATURATION
    STEPISNIK, J
    SLAK, J
    JOURNAL OF MAGNETIC RESONANCE, 1973, 12 (02) : 148 - 151
  • [32] Magnetization plateaus of dipolar spin ice on kagome lattice
    Xie, Y. L.
    Wang, Y. L.
    Yan, Z. B.
    Liu, J. -M.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [33] Localized gap modes of coherently trapped atoms in an optical lattice
    Chen, Zhiming
    Zeng, Jianhua
    OPTICS EXPRESS, 2021, 29 (03): : 3011 - 3025
  • [34] Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms
    S. Hensler
    J. Werner
    A. Griesmaier
    P.O. Schmidt
    A. Görlitz
    T. Pfau
    S. Giovanazzi
    K. Rzażewski
    Applied Physics B, 2003, 77 : 765 - 772
  • [35] Bright solitons in a spin-orbit-coupled dipolar Bose-Einstein condensate trapped within a double-lattice
    Wang, Qi
    Qin, Jieli
    Zhao, Junjie
    Qin, Lu
    Zhang, Yingying
    Feng, Xuejing
    Zhou, Lu
    Yang, Chunjie
    Zhou, Yanfen
    Zhu, Zunlue
    Liu, Wuming
    Zhao, Xingdong
    OPTICS EXPRESS, 2024, 32 (04): : 6658 - 6671
  • [36] Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms
    Hensler, S
    Werner, J
    Griesmaier, A
    Schmidt, PO
    Görlitz, A
    Pfau, T
    Giovanazzi, S
    Rzazewski, K
    APPLIED PHYSICS B-LASERS AND OPTICS, 2003, 77 (08): : 765 - 772
  • [37] Nuclear reaction by three-body recombination between deuterons and the nuclei of lattice-trapped D2 molecules
    Engvild, KC
    FUSION TECHNOLOGY, 1998, 34 (03): : 253 - 255
  • [38] Distant Spin Correlations in Quantum Spin Liquid on the Honeycomb Lattice
    Geng, Hao
    Fan, Zhuo
    Jie, Quan-lin
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (06):
  • [39] Bipartite entanglement and entropic boundary law in lattice spin systems
    Hamma, A
    Ionicioiu, R
    Zanardi, P
    PHYSICAL REVIEW A, 2005, 71 (02):
  • [40] GAUSSIAN BOUNDS FOR CORRELATIONS IN LATTICE SPIN SYSTEMS
    TASAKI, H
    JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (5-6) : 873 - 890