Deep Learning-based Automatic Optimization of Design Smart Home

被引:0
|
作者
Wang Z. [1 ]
Wang D. [2 ]
机构
[1] School of Ceramics, Pingdingshan University, Henan, Pingdingshan
[2] School of Art and Design College, Henan University of Urban Construction, Henan, Pingdingshan
来源
Computer-Aided Design and Applications | 2024年 / 21卷 / S18期
关键词
Automation Optimization; Computer-Aided Design; Deep Learning; Smart Home Design; User Behavior Pattern;
D O I
10.14733/cadaps.2024.S18.96-113
中图分类号
学科分类号
摘要
In this article, the DL (Deep Learning) algorithm, CAD (Computer Aided Design) technology, and other technologies and methods in different fields are comprehensively applied to solve some key problems in the field of smart home design. Specifically, this article constructs an automatic optimization model, which can automatically adjust the control strategy of equipment according to the individual needs and habits of users and realize the automatic control and optimization of equipment. When constructing the automatic optimization model, this article fully considers the issues of security and privacy protection and adopts encryption, access control and other technologies to ensure the security of the system while following the relevant privacy protection laws and standards. The results show that the identification accuracy of this model for user behaviour patterns and habits reaches 95%, which is significantly higher than the traditional behaviour identification methods. Moreover, the design time using this model is shortened by about 40% on average; The design quality score is improved by about 20% on average. In addition, most users give high marks to the smart home design model based on the DL algorithm, with an average score of more than 8.5. This cross-domain comprehensive application mode has great innovation and practical value and can provide a reference for technological innovation and application in other fields. © 2024 U-turn Press LLC, http://www.cad-journal.net.
引用
收藏
页码:96 / 113
页数:17
相关论文
共 50 条
  • [31] A deep learning-based multi-fidelity optimization method for the design of acoustic metasurface
    Jinhong Wu
    Xingxing Feng
    Xuan Cai
    Xufeng Huang
    Qi Zhou
    Engineering with Computers, 2023, 39 : 3421 - 3439
  • [32] Multiview Deep Learning-Based Molecule Design and Structural Optimization Accelerates Inhibitor Discover
    Pang, Chao
    Wang, Yu
    Jiang, Yi
    Wang, Ruheng
    Yao, Xiaojun
    Zou, Quan
    Zeng, Xiangxiang
    Su, Ran
    Wei, Leyi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [33] Deep learning-based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design
    del Rio-Chanona, Ehecatl Antonio
    Wagner, Jonathan L.
    Ali, Haider
    Fiorelli, Fabio
    Zhang, Dongda
    Hellgardt, Klaus
    AICHE JOURNAL, 2019, 65 (03) : 915 - 923
  • [34] Deep learning-based automatic downbeat tracking: a brief review
    Bijue Jia
    Jiancheng Lv
    Dayiheng Liu
    Multimedia Systems, 2019, 25 : 617 - 638
  • [35] DeepACO: A Robust Deep Learning-based Automatic Checkout System
    Long Hoang Pham
    Duong Nguyen-Ngoc Tran
    Huy-Hung Nguyen
    Tai Huu-Phuong Tran
    Hyung-Joon Jeon
    Hyung-Min Jeon
    Jae Wook Jeon
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3106 - 3113
  • [36] Deep learning-based automatic inpainting for material microscopic images
    Ma, Boyuan
    Ma, Bin
    Gao, Mingfei
    Wang, Zixuan
    Ban, Xiaojuan
    Huang, Haiyou
    Wu, Weiheng
    JOURNAL OF MICROSCOPY, 2021, 281 (03) : 177 - 189
  • [37] Deep Learning-based Model for Automatic Salt Rock Segmentation
    Li, Hong
    Hu, Qintao
    Mao, Yao
    Niu, Fanglian
    Liu, Chao
    ROCK MECHANICS AND ROCK ENGINEERING, 2022, 55 (06) : 3735 - 3747
  • [38] Automatic deep learning-based pipeline for Mediterranean fish segmentation
    Muntaner-Gonzalez, Caterina
    Nadal-Martinez, Antonio
    Martin-Abadal, Miguel
    Gonzalez-Cid, Yolanda
    FRONTIERS IN MARINE SCIENCE, 2025, 12
  • [39] An automatic deep learning-based system for screening and management of DME
    Galdran, A.
    Chakor, H.
    Kabir, W.
    Kobbi, R.
    Liu, B.
    Dolz, J.
    Ben Ayed, I.
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2022, 186
  • [40] Modern Architecture for Deep learning-based Automatic Optical Inspection
    Richter, Johannes
    Streitferdt, Detlef
    2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 2, 2019, : 141 - 145