Machine-learning-assisted prediction of the size of microgels prepared by aqueous precipitation polymerization

被引:1
|
作者
Suzuki, Daisuke [1 ,2 ]
Minato, Haruka [1 ,2 ]
Sato, Yuji [1 ,2 ]
Namioka, Ryuji [2 ]
Igarashi, Yasuhiko [3 ]
Shibata, Risako [4 ]
Oaki, Yuya [4 ]
机构
[1] Okayama Univ, Grad Sch Environm Life Nat Sci & Technol, 3-1-1 Tsushimanaka,Kita Ku, Okayama 7008530, Japan
[2] Shinshu Univ, Grad Sch Text Sci & Technol, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan
[3] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennodai, Tsukuba 3058573, Japan
[4] Keio Univ, Fac Sci & Technol, Dept Appl Chem, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama 2238522, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
HYDROGEL MICROSPHERES; PARTICLES;
D O I
10.1039/d4cc04386c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The size of soft colloids (microgels) is essential; however, control over their size has typically been established empirically. Herein, we report a linear-regression model that can predict microgel size using a machine learning method, sparse modeling for small data, which enables the determination of the synthesis conditions for target-sized microgels. We report a linear-regression model that can predict microgel size using a machine learning method, sparse modeling for small data.
引用
收藏
页码:13678 / 13681
页数:5
相关论文
共 50 条
  • [1] Machine-learning-assisted prediction of magnetic double perovskites
    Halder, Anita
    Ghosh, Aishwaryo
    Dasgupta, Tanusri Saha
    PHYSICAL REVIEW MATERIALS, 2019, 3 (08)
  • [2] Machine-learning-assisted modeling
    Greenstreet, Sarah
    PHYSICS TODAY, 2021, 74 (07) : 42 - 47
  • [3] Machine-learning-assisted prediction of surgical outcomes in patients undergoing gastrectomy
    Sheng Lu
    Min Yan
    Chen Li
    Chao Yan
    Zhenggang Zhu
    Wencong Lu
    ChineseJournalofCancerResearch, 2019, 31 (05) : 797 - 805
  • [4] Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy
    Zheng-hua Deng
    Hai-qing Yin
    Xue Jiang
    Cong Zhang
    Guo-fei Zhang
    Bin Xu
    Guo-qiang Yang
    Tong Zhang
    Mao Wu
    Xuan-hui Qu
    InternationalJournalofMineralsMetallurgyandMaterials, 2020, 27 (03) : 362 - 373
  • [5] Machine-learning-assisted prediction of surgical outcomes in patients undergoing gastrectomy
    Lu, Sheng
    Yan, Min
    Li, Chen
    Yan, Chao
    Zhu, Zhenggang
    Lu, Wencong
    CHINESE JOURNAL OF CANCER RESEARCH, 2019, 31 (05) : 797 - +
  • [6] Machine-Learning-Assisted Failure Prediction in Microwave Networks based on Equipment Alarms
    Lateano, Francesco
    Ayoub, Omran
    Musumeci, Francesco
    Tornatore, Massimo
    2023 19TH INTERNATIONAL CONFERENCE ON THE DESIGN OF RELIABLE COMMUNICATION NETWORKS, DRCN, 2023,
  • [7] Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy
    Zheng-hua Deng
    Hai-qing Yin
    Xue Jiang
    Cong Zhang
    Guo-fei Zhang
    Bin Xu
    Guo-qiang Yang
    Tong Zhang
    Mao Wu
    Xuan-hui Qu
    International Journal of Minerals, Metallurgy and Materials, 2020, 27 : 362 - 373
  • [8] An Improved Inspection Process and Machine-Learning-Assisted Bridge Condition Prediction Model
    Fang, Jingang
    Hu, Jun
    Elzarka, Hazem
    Zhao, Hongyu
    Gao, Ce
    BUILDINGS, 2023, 13 (10)
  • [9] Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy
    Deng, Zheng-hua
    Yin, Hai-qing
    Jiang, Xue
    Zhang, Cong
    Zhang, Guo-fei
    Xu, Bin
    Yang, Guo-qiang
    Zhang, Tong
    Wu, Mao
    Qu, Xuan-hui
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2020, 27 (03) : 362 - 373
  • [10] Machine-Learning-Assisted Accurate Prediction of Molecular Optical Properties upon Aggregation
    Xu, Shidang
    Liu, Xiaoli
    Cai, Pengfei
    Li, Jiali
    Wang, Xiaonan
    Liu, Bin
    ADVANCED SCIENCE, 2022, 9 (02)