Multiscale plastic deformation in additively manufactured FeCoCrNiMox high-entropy alloys to achieve strength-ductility synergy at elevated temperatures

被引:17
|
作者
Lin, Danyang [1 ]
Hu, Jixu [1 ]
Wu, Renhao [2 ]
Liu, Yazhou [1 ,4 ]
Li, Xiaoqing [3 ]
Sagong, Man Jae [2 ]
Tan, Caiwang [1 ]
Song, Xiaoguo [1 ]
Kim, Hyoung Seop [2 ,4 ,5 ,6 ]
机构
[1] Harbin Inst Technol, State Key Lab Precis Welding & Joining Mat & Struc, Harbin 150001, Peoples R China
[2] Pohang Univ Sci & Technol, Grad Inst Ferrous & Eco Mat Technol, Pohang 37673, South Korea
[3] KTH Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden
[4] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 37673, South Korea
[5] Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai 9808577, Japan
[6] Yonsei Univ, Inst Convergence Res & Educ Adv Technol, Seoul 03722, South Korea
基金
中国国家自然科学基金; 瑞典研究理事会; 新加坡国家研究基金会;
关键词
Multiscale plastic deformation; Deformation twinning; Molecular dynamics simulation; Elevated temperature; HIGH ENTROPY ALLOYS; STACKING-FAULT ENERGY; MECHANICAL-PROPERTIES; MICROSTRUCTURE; APPROXIMATION; EVOLUTION; BEHAVIOR; SIGMA;
D O I
10.1016/j.ijplas.2024.104142
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The application of structural metals in extreme environments necessitates materials with superior mechanical properties. Mo-doped FeCoCrNi high-entropy alloys (HEAs) have emerged as potential candidates for use in such demanding environments. This study investigates the hightemperature performance of FeCoCrNiMox HEAs with varying Mo contents (x = 0, 0.1, 0.3, and 0.5) prepared by laser powder bed fusion additive manufacturing. The mechanical properties were evaluated at room and 600 degrees C temperatures, and the microstructures were characterized using scanning electron microscopy, electron backscatter diffraction, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The intrinsic dislocation cell patterning, solid-solution strengthening, nanoprecipitation, and twinning effects collectively modulated the plastic deformation behavior of the samples. The high-temperature mechanical performance was comprehensively analyzed in conjunction with ab initio calculations and molecular dynamics simulations to reveal the origin of the experimentally observed strength-ductility synergy of FeCoCrNiMo0.3. This study has significant implications for FeCoCrNiMox HEAs and extends our understanding of the structural origins of the exceptional mechanical properties of additively manufactured HEAs.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures
    Li, Yi
    Shi, Peijian
    Wang, Mingyang
    Yang, Yinpan
    Wang, Yan
    Li, Yiqi
    Wen, Yuebo
    Ren, Weili
    Min, Na
    Chen, Yan
    Guo, Yifeng
    Shen, Zhe
    Zheng, Tianxiang
    Liang, Ningning
    Lu, Wenjun
    Liaw, Peter K.
    Zhong, Yunbo
    Zhu, Yuntian
    MATERIALS RESEARCH LETTERS, 2022, 10 (09): : 602 - 610
  • [22] Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae
    Shi, Peijian
    Ren, Weili
    Zheng, Tianxiang
    Ren, Zhongming
    Hou, Xueling
    Peng, Jianchao
    Hu, Pengfei
    Gao, Yanfei
    Zhong, Yunbo
    Liaw, Peter K.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [23] Equiaxed microstructure design enables strength-ductility synergy in the eutectic high-entropy alloy
    Zhang, Zequn
    Huang, Yong
    Xu, Qi
    Fellner, Simon
    Hohenwarter, Anton
    Wurster, Stefan
    Song, Kaikai
    Gammer, Christoph
    Eckert, Jurgen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 103 - 114
  • [24] A Lightweight AlTiVNb High-Entropy Alloy Film with High Strength-Ductility Synergy and Corrosion Resistance
    Feng, Xiaobin
    Feng, Chuangshi
    Lu, Yang
    MATERIALS, 2022, 15 (23)
  • [25] Tuning strength-ductility combination of the additively manufactured Al12Si based alloys via compositional regulation and plastic deformation
    Wen, Tao
    Yang, Feipeng
    Wang, Jianying
    Liu, Zhilin
    Qiu, Dong
    Ji, Shouxun
    Yang, Hailin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 924
  • [26] Circumventing strength-ductility paradox in high entropy alloys through deformation processing
    Garg, Mayank
    Grewal, Harpreet S.
    Sharma, Ram K.
    Gwalani, Bharat
    Arora, Harpreet S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 933
  • [27] An additively manufactured precipitation hardening medium entropy alloy with excellent strength-ductility synergy over a wide temperature range
    Huang, Jing
    Li, Wanpeng
    Yang, Tao
    Chou, Tzu-Hsiu
    Zhou, Rui
    Liu, Bin
    Huang, Jacob C.
    Liu, Yong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 197 : 247 - 264
  • [28] Enhanced strength-ductility synergy in high-entropy alloys via architecting three-level gradient hierarchical nanostructure
    Zeng, Longfei
    Zeng, Luming
    Xu, Peng
    Liu, Weijiang
    Liang, Tongxiang
    Li, Weirong
    Zhang, Xuehui
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 885
  • [29] Review on Additively Manufactured Refractory High-Entropy Alloys
    Bang, Xiao
    Jia Wenpeng
    Jian, Wang
    Lian, Zhou
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (09) : 3056 - 3064
  • [30] Review on Additively Manufactured Refractory High-Entropy Alloys
    Xiao, Bang
    Jia, Wenpeng
    Wang, Jian
    Zhou, Lian
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2023, 52 (09): : 3056 - 3064