Improving Heat Transfer in Parabolic Trough Solar Collectors by Magnetic Nanofluids

被引:0
|
作者
Singh R. [1 ]
Gupta A. [1 ]
Paul A.R. [1 ]
Paul B. [1 ]
Saha S.C. [2 ]
机构
[1] Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj
[2] Department of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney
关键词
convective heat transfer coefficient (HTC); heat transfer; magnetic nanofluid (MNF); Parabolic trough solar collector (PTSC); thermal enhancement factor (TEF);
D O I
10.32604/ee.2024.046849
中图分类号
学科分类号
摘要
A parabolic trough solar collector (PTSC) converts solar radiation into thermal energy. However, low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants. Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid. The circular receiver pipe, with dimensions of 66 mm diameter, 2 mm thickness, and 24 m length, is exposed to uniform temperature and velocity conditions. The working fluid, Therminol-66, is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1% to 4%. The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient (HTC) of the PTSC, with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop. The thermal enhancement factor (TEF) of the PTSC is positively affected by the volume fraction of nanoparticles, both with and without a magnetic field. Notably, the scenario with a 4% nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF, indicating superior thermal performance. These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid. © 2024, Tech Science Press. All rights reserved.
引用
收藏
页码:835 / 848
页数:13
相关论文
共 50 条
  • [21] OPTIMIZATION OF PARABOLIC TROUGH SOLAR COLLECTORS
    RABL, A
    BENDT, P
    GAUL, HW
    SOLAR ENERGY, 1982, 29 (05) : 407 - 417
  • [22] Simplified heat transfer model for parabolic trough solar collectors using supercritical CO2
    Aguilar, Rafael
    Valenzuela, Loreto
    Avila-Marin, Antonio L.
    Garcia-Ybarra, Pedro L.
    ENERGY CONVERSION AND MANAGEMENT, 2019, 196 : 807 - 820
  • [23] Heat transfer analysis of parabolic trough solar receiver
    Vasquez Padilla, Ricardo
    Demirkaya, Gokmen
    Goswami, D. Yogi
    Stefanakos, Elias
    Rahman, Muhammad M.
    APPLIED ENERGY, 2011, 88 (12) : 5097 - 5110
  • [24] Enhancing the performance of parabolic trough collectors using nanofluids and turbulators
    Bellos, Evangelos
    Tzivanidis, Christos
    Tsimpoukis, Dimitrios
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 91 : 358 - 375
  • [25] An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids
    Abubakr, Mohamed
    Amein, Hamza
    Akoush, Bassem M.
    El-Bakry, M. Medhat
    Hassan, Muhammed A.
    RENEWABLE ENERGY, 2020, 157 (157) : 130 - 149
  • [26] Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants
    Ghasemi, Seyed Ebrahim
    Ranjbar, Ali Akbar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (34) : 21626 - 21634
  • [27] Daily performance of parabolic trough solar collectors
    Bellos, Evangelos
    Tzivanidis, Christos
    Belessiotis, Vassilis
    SOLAR ENERGY, 2017, 158 : 663 - 678
  • [28] Parabolic-trough solar collectors and their applications
    Fernandez-Garcia, A.
    Zarza, E.
    Valenzuela, L.
    Perez, M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (07): : 1695 - 1721
  • [29] Thermal performance of parabolic trough solar collectors
    Conrado, L. Salgado
    Rodriguez-Pulido, A.
    Calderon, G.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 67 : 1345 - 1359
  • [30] Alternative designs of parabolic trough solar collectors
    Bellos, Evangelos
    Tzivanidis, Christos
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2019, 71 : 81 - 117