Vertex-Critical (P5, chair)-Free Graphs

被引:0
|
作者
Huang, Shenwei [1 ]
Li, Zeyu [2 ]
机构
[1] College of Computer Science, Nankai University, Tianjin,300350, China
[2] Tianjin Key Laboratory of Network and Data Security Technology, Nankai University, Tianjin,300071, China
来源
arXiv | 2023年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Graph theory
引用
收藏
相关论文
共 50 条
  • [31] GRAPHS WHICH ARE VERTEX-CRITICAL WITH RESPECT TO THE EDGE-CHROMATIC CLASS
    HILTON, AJW
    JOHNSON, PD
    MATHEMATIKA, 1989, 36 (72) : 241 - 252
  • [32] On the chromatic number of (P5, dart)-free graphs
    Xu, Weilun
    Zhang, Xia
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (03)
  • [33] The Chromatic Number of (P5, HVN)-free Graphs
    Xu, Yian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (04): : 1098 - 1110
  • [34] GRAPHS WHICH ARE VERTEX-CRITICAL WITH RESPECT TO THE EDGE-CHROMATIC NUMBER
    HILTON, AJW
    JOHNSON, PD
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 102 : 211 - 221
  • [35] Coloring (P5, kite)-free graphs with small cliques
    Huang, Shenwei
    Ju, Yiao
    Karthick, T.
    DISCRETE APPLIED MATHEMATICS, 2024, 344 : 129 - 139
  • [36] A BOUND FOR THE CHROMATIC NUMBER OF (P5, GEM)-FREE GRAPHS
    Cameron, Kathie
    Huang, Shenwei
    Merkel, Owen
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (02) : 182 - 188
  • [37] Coloring of (P5, 4-wheel)-free graphs
    Char, Arnab
    Karthick, T.
    DISCRETE MATHEMATICS, 2022, 345 (05)
  • [38] On colouring (2P2, H)-free and (P5, H)-free graphs
    Dabrowski, Konrad K.
    Paulusma, Daniel
    INFORMATION PROCESSING LETTERS, 2018, 134 : 35 - 41
  • [39] The chromatic number of {P5, K4}-free graphs
    Esperet, Louis
    Lemoine, Laetitia
    Maffray, Frederic
    Morel, Gregory
    DISCRETE MATHEMATICS, 2013, 313 (06) : 743 - 754
  • [40] Coloring (P5,gem-free graphs with Δ−1 colors
    Cranston, Daniel W.
    Lafayette, Hudson
    Rabern, Landon
    Journal of Graph Theory, 2022, 101 (04): : 633 - 642