Large language models design sequence-defined macromolecules via evolutionary optimization

被引:0
|
作者
Reinhart, Wesley F. [1 ,2 ]
Statt, Antonia [3 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Inst Computat & Data Sci, University Pk, PA 16802 USA
[3] Univ Illinois, Grainger Coll Engn, Dept Mat Sci & Engn, Champaign, IL 61801 USA
基金
美国国家科学基金会;
关键词
Active learning - Soft materials;
D O I
10.1038/s41524-024-01449-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate the ability of a large language model to perform evolutionary optimization for materials discovery. Anthropic's Claude 3.5 model outperforms an active learning scheme with handcrafted surrogate models and an evolutionary algorithm in selecting monomer sequences to produce targeted morphologies in macromolecular self-assembly. Utilizing pre-trained language models can potentially reduce the need for hyperparameter tuning while offering new capabilities such as self-reflection. The model performs this task effectively with or without context about the task itself, but domain-specific context sometimes results in faster convergence to good solutions. Furthermore, when this context is withheld, the model infers an approximate notion of the task (e.g., calling it a protein folding problem). This work provides evidence of Claude 3.5's ability to act as an evolutionary optimizer, a recently discovered emergent behavior of large language models, and demonstrates a practical use case in the study and design of soft materials.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Reading mixtures of uniform sequence-defined macromolecules to increase data storage capacity
    Maximiliane Frölich
    Dennis Hofheinz
    Michael A. R. Meier
    Communications Chemistry, 3
  • [32] Design, synthesis, and assembly of sequence-defined peptoid polymers
    Zuckermann, Ronald
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [33] Ugi Reaction of Amino Acids: From Facile Synthesis of Polypeptoids to Sequence-Defined Macromolecules
    Tao, Yue
    Tao, Youhua
    MACROMOLECULAR RAPID COMMUNICATIONS, 2021, 42 (06)
  • [34] Recent Developments in Solid-Phase Strategies towards Synthetic, Sequence-Defined Macromolecules
    Hill, Stephen A.
    Gerke, Christoph
    Hartmann, Laura
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (23) : 3611 - 3622
  • [35] Flow-IEG enables programmable thermodynamic properties in sequence-defined unimolecular macromolecules
    Wicker, Amanda C.
    Leibfarth, Frank A.
    Jamison, Timothy F.
    POLYMER CHEMISTRY, 2017, 8 (37) : 5786 - 5794
  • [36] Monodisperse, sequence-defined macromolecules as a tool to evaluate the limits of ring-closing metathesis
    Wetzel, Katharina S.
    Meier, Michael A. R.
    POLYMER CHEMISTRY, 2019, 10 (21) : 2716 - 2722
  • [37] Scalable Synthesis of Sequence-Defined Oligomers via Photoflow Chemistry
    Van De Walle, Matthias
    De Bruycker, Kevin
    Junkers, Tanja
    Blinco, James P.
    Barner-Kowollik, Christopher
    CHEMPHOTOCHEM, 2019, 3 (05): : 225 - 228
  • [38] Sequencing of Sequence-Defined Oligourethanes via Controlled Self-Immolation
    Dahlhauser, Samuel D.
    Escamilla, P. Rogelio
    VandeWalle, Abigail N.
    York, Jordan T.
    Rapagnani, Rachel M.
    Shei, Jasper S.
    Glass, Samuel A.
    Coronado, Jaime N.
    Moor, Sarah R.
    Saunders, Douglas P.
    Anslyn, Eric V.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (06) : 2744 - 2749
  • [39] Sequence-Defined Polymers via Orthogonal Allyl Acrylamide Building Blocks
    Porel, Mintu
    Alabi, Christopher A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (38) : 13162 - 13165
  • [40] Rational Design of Novel Biomimetic Sequence-Defined Polymers for Mineralization Applications
    Torkelson, Kaylyn
    Naser, Nada Y.
    Qi, Xin
    Li, Zhiliang
    Yang, Wenchao
    Pushpavanam, Karthik
    Chen, Chun-Long
    Baneyx, Francois
    Pfaendtner, Jim
    CHEMISTRY OF MATERIALS, 2024, 36 (02) : 786 - 794