Large language models design sequence-defined macromolecules via evolutionary optimization

被引:0
|
作者
Reinhart, Wesley F. [1 ,2 ]
Statt, Antonia [3 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Inst Computat & Data Sci, University Pk, PA 16802 USA
[3] Univ Illinois, Grainger Coll Engn, Dept Mat Sci & Engn, Champaign, IL 61801 USA
基金
美国国家科学基金会;
关键词
Active learning - Soft materials;
D O I
10.1038/s41524-024-01449-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate the ability of a large language model to perform evolutionary optimization for materials discovery. Anthropic's Claude 3.5 model outperforms an active learning scheme with handcrafted surrogate models and an evolutionary algorithm in selecting monomer sequences to produce targeted morphologies in macromolecular self-assembly. Utilizing pre-trained language models can potentially reduce the need for hyperparameter tuning while offering new capabilities such as self-reflection. The model performs this task effectively with or without context about the task itself, but domain-specific context sometimes results in faster convergence to good solutions. Furthermore, when this context is withheld, the model infers an approximate notion of the task (e.g., calling it a protein folding problem). This work provides evidence of Claude 3.5's ability to act as an evolutionary optimizer, a recently discovered emergent behavior of large language models, and demonstrates a practical use case in the study and design of soft materials.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Sequence-defined macromolecules via multicomponent reactions
    Solleder, Susanne Carina
    Wetzel, Katharina S.
    Meier, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [2] Molecular design and activity of sequence-defined antimicrobial macromolecules
    Alabi, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [3] Recent Progress in the Design of Monodisperse, Sequence-Defined Macromolecules
    Solleder, Susanne C.
    Schneider, Rebekka V.
    Wetzel, Katharina S.
    Boukis, Andreas C.
    Meier, Michael A. R.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2017, 38 (09)
  • [4] Data storage in sequence-defined macromolecules via multicomponent reactions
    Boukis, Andreas C.
    Meier, Michael A. R.
    EUROPEAN POLYMER JOURNAL, 2018, 104 : 32 - 38
  • [5] The current science of sequence-defined macromolecules
    Hakobyan, Karen
    Noble, Benjamin B.
    Xu, Jiangtao
    PROGRESS IN POLYMER SCIENCE, 2023, 147
  • [6] Photochemically driven synthesis of sequence-defined macromolecules
    Zydziak, Nicolas
    Konrad, Waldemar
    Feist, Florian
    Barner-Kowollik, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [7] Sequence-defined antibody-recruiting macromolecules
    Aksakal, Resat
    Tonneaux, Corentin
    Uvyn, Annemiek
    Fossepre, Mathieu
    Turgut, Hatice
    Badi, Nezha
    Surin, Mathieu
    De Geest, Bruno G.
    Du Prez, Filip. E.
    CHEMICAL SCIENCE, 2023, 14 (24) : 6572 - 6578
  • [8] Uniform soluble support for the large-scale synthesis of sequence-defined macromolecules
    De Franceschi, Irene
    Mertens, Chiel
    Badi, Nezha
    Du Prez, Filip
    POLYMER CHEMISTRY, 2022, 13 (39) : 5616 - 5624
  • [9] Oligothioetheramides: A novel strategy for the assembly of sequence-defined macromolecules
    Porel, Mintu
    Alabi, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [10] Multifunctional sequence-defined macromolecules for chemical data storage
    Martens, Steven
    Landuyt, Annelies
    Espeel, Pieter
    Devreese, Bart
    Dawyndt, Peter
    Du Prez, Filip
    NATURE COMMUNICATIONS, 2018, 9