Learn to Collaborate in MEC: An Adaptive Decentralized Federated Learning Framework

被引:0
|
作者
Wang, Yatong [1 ]
Wen, Zhongyi [2 ]
Li, Yunjie [1 ]
Cao, Bin [3 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Collaboration; Training; Computational modeling; Computer architecture; Federated learning; Servers; Distributed databases; mobile edge computing; option-critic; multi-agent reinforcement learning;
D O I
10.1109/TMC.2024.3439588
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decentralized federated learning (DFL) has emerged as a conducive paradigm, facilitating a distributed privacy-preserving data collaboration mode in mobile edge computing (MEC) systems to bolster the expansion of artificial intelligence applications. Nevertheless, the dynamic wireless environment and the heterogeneity among collaborating nodes, characterized by skewed datasets and uneven capabilities, present substantial challenges for efficient DFL model training in MEC systems. Consequently, the design of an efficient collaboration strategy becomes essential to facilitate practical distributed knowledge sharing and cost reduction for MEC. In this paper, we propose an adaptive decentralized federated learning framework that enables heterogeneous nodes to learn tailored collaboration strategies, thereby maximizing the efficiency of the DFL training process in collaborative MEC systems. Specifically, we present an effective option critic-based collaboration strategy learning (OCSL) mechanism by decomposing the collaboration strategy model into two sub-strategies: local training strategy and resource scheduling strategy. In addressing inherent issues such as large-scale action space and overestimation in collaboration strategy learning, we introduce the option framework and a dual critic network-based approximation method within the OCSL design. We theoretically prove that the learned collaboration strategy achieves the Nash equilibrium. Extensive numerical results demonstrate the effectiveness of the proposed method in comparison with existing baselines.
引用
收藏
页码:14071 / 14084
页数:14
相关论文
共 50 条
  • [41] Decentralized Federated Learning with Prototype Exchange
    Qi, Lu
    Chen, Haoze
    Zou, Hongliang
    Chen, Shaohua
    Zhang, Xiaoying
    Chen, Hongyan
    MATHEMATICS, 2025, 13 (02)
  • [42] Fedstellar: A Platform for Decentralized Federated Learning
    Beltran, Enrique Tomas Martinez
    Gomez, angel Luis Perales
    Feng, Chao
    Sanchez, Pedro Miguel
    Bernal, Sergio Lopez
    Bovet, Gerome
    Perez, Manuel Gil
    Perez, Gregorio Martinez
    Celdran, Alberto Huertas
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [43] Towards Efficient Decentralized Federated Learning
    Pappas, Christodoulos
    Papadopoulos, Dimitrios
    Chatzopoulos, Dimitris
    Panagou, Eleni
    Lalis, Spyros
    Vavalis, Manolis
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS (ICDCSW), 2022, : 79 - 85
  • [44] Adaptive federated deep reinforcement learning for edge offloading in heterogeneous AGI-MEC networks
    Fan, Chenchen
    Wang, Qingling
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [45] Computation Offloading and Resource Allocation Based on DT-MEC-Assisted Federated Learning Framework
    He, Yejun
    Yang, Mengna
    He, Zhou
    Guizani, Mohsen
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2023, 9 (06) : 1707 - 1720
  • [46] Communication Topologies for Decentralized Federated Learning
    Doetzer, Michael
    Mao, Yixin
    Diepold, Klaus
    2023 EIGHTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING, FMEC, 2023, : 232 - 238
  • [47] Decentralized Federated Learning: A Survey and Perspective
    Yuan, Liangqi
    Wang, Ziran
    Sun, Lichao
    Yu, Philip S.
    Brinton, Christopher G.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 34617 - 34638
  • [48] Quantum Federated Learning With Decentralized Data
    Huang, Rui
    Tan, Xiaoqing
    Xu, Qingshan
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (04)
  • [49] STATISTICAL INFERENCE FOR DECENTRALIZED FEDERATED LEARNING
    Gu, Jia
    Chen, Song xi
    ANNALS OF STATISTICS, 2024, 52 (06): : 2931 - 2955
  • [50] Decentralized Federated Learning With Unreliable Communications
    Ye, Hao
    Liang, Le
    Li, Geoffrey Ye
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (03) : 487 - 500