Multi-layer Cascade Classifier for Credit Scoring with Multiple-Support Vector Machines

被引:0
|
作者
Feng, Hao [1 ]
Li, Shuqing [1 ]
机构
[1] College of Information Engineering, Nanjing University of Finance & Economics, Nanjing,210023, China
关键词
Classification (of information) - Genetic algorithms - Vectors;
D O I
暂无
中图分类号
学科分类号
摘要
[Objective] This paper proposes a new multi-layer cascade classifier based on multiple-support vector machines, aiming to address the credit scoring issues of financial institutions. [Methods] The proposed hybrid model combines the ideas of genetic algorithm, machine learning and ensemble learning. The framework includes support vector machine classifier, normalization method, feature extraction, parameter optimization, 10-fold cross evaluation and other technologies. We tested the layer deepening strategy, attribute reuse method, and fitness function diversification by experiment. [Results] We examined the support vector machine optimized by genetic algorithm with Australian Credit Approval dataset. The prediction accuracy was improved as the increase of layers, and the overall frame prediction accuracy reached 93.33%. [Limitations] The proposed method only uses SVM, which needs to be expanded. There are many classifiers in the framework, which took long time to train and optimize. [Conclusions] The proposed classifier could effectively improve credit scoring services, and finish similar binary classification tasks. © 2021 The Author(s).
引用
收藏
页码:28 / 36
相关论文
共 50 条
  • [1] Application of Support Vector Machines Method in Credit Scoring
    Zhang, Leilei
    Hui, Xiaofeng
    [J]. SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 283 - 290
  • [2] Credit scoring by feature-weighted support vector machines
    Jian SHI
    Shu-you ZHANG
    Le-miao QIU
    [J]. Frontiers of Information Technology & Electronic Engineering, 2013, 14 (03) : 197 - 204
  • [3] Application of Support Vector Machines for Reject Inference in Credit Scoring
    Yaurita, F.
    Rustam, Z.
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2017 (ISCPMS2017), 2018, 2023
  • [4] Credit Scoring: A Review on Support Vector Machines and Metaheuristic Approaches
    Goh, R. Y.
    Lee, L. S.
    [J]. ADVANCES IN OPERATIONS RESEARCH, 2019, 2019
  • [5] Application of Adaptive Support Vector Machines Method in Credit Scoring
    Zhang Lei-lei
    Hui Xiao-feng
    Wang Lei
    [J]. 2009 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (16TH), VOLS I AND II, CONFERENCE PROCEEDINGS, 2009, : 1410 - 1415
  • [6] Support vector machines for credit scoring and discovery of significant features
    Bellotti, Tony
    Crook, Jonathan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 3302 - 3308
  • [7] Credit scoring by feature-weighted support vector machines
    Jian Shi
    Shu-you Zhang
    Le-miao Qiu
    [J]. Journal of Zhejiang University SCIENCE C, 2013, 14 : 197 - 204
  • [8] Credit scoring by feature-weighted support vector machines
    Shi, Jian
    Zhang, Shu-you
    Qiu, Le-miao
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2013, 14 (03): : 197 - 204
  • [9] Credit scoring models and credit-risk evaluation based on support vector machines
    Institute of Systems Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    [J]. Huazhong Ligong Daxue Xuebao, 2007, 5 (23-26): : 23 - 26
  • [10] Least squares support vector machines ensemble models for credit scoring
    Zhou, Ligang
    Lai, Kin Keung
    Yu, Lean
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (01) : 127 - 133