Support vector machines for credit scoring and discovery of significant features

被引:167
|
作者
Bellotti, Tony [1 ]
Crook, Jonathan [1 ]
机构
[1] Univ Edinburgh, Management Sch & Econ, Credit Res Ctr, Edinburgh EH8 9JY, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
SVM; Credit scoring; Feature selection; CLASSIFIER TECHNOLOGY; ILLUSION; PROGRESS;
D O I
10.1016/j.eswa.2008.01.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The assessment of risk of default oil credit is important for financial institutions. Logistic regression and discriminant analysis are techniques traditionally used in credit scoring for determining likelihood to default based on consumer application and credit reference agency data. We test support vector machines against these traditional methods on a large credit card database. We find that they are competitive and can be used as the basis of a feature selection method to discover those features that are most significant in determining risk of default. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3302 / 3308
页数:7
相关论文
共 50 条
  • [1] Application of Support Vector Machines Method in Credit Scoring
    Zhang, Leilei
    Hui, Xiaofeng
    [J]. SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 283 - 290
  • [2] Application of Support Vector Machines for Reject Inference in Credit Scoring
    Yaurita, F.
    Rustam, Z.
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2017 (ISCPMS2017), 2018, 2023
  • [3] Credit scoring by feature-weighted support vector machines
    Jian SHI
    Shu-you ZHANG
    Le-miao QIU
    [J]. Frontiers of Information Technology & Electronic Engineering, 2013, 14 (03) : 197 - 204
  • [4] Application of Adaptive Support Vector Machines Method in Credit Scoring
    Zhang Lei-lei
    Hui Xiao-feng
    Wang Lei
    [J]. 2009 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (16TH), VOLS I AND II, CONFERENCE PROCEEDINGS, 2009, : 1410 - 1415
  • [5] Credit Scoring: A Review on Support Vector Machines and Metaheuristic Approaches
    Goh, R. Y.
    Lee, L. S.
    [J]. ADVANCES IN OPERATIONS RESEARCH, 2019, 2019
  • [6] Credit scoring by feature-weighted support vector machines
    Jian Shi
    Shu-you Zhang
    Le-miao Qiu
    [J]. Journal of Zhejiang University SCIENCE C, 2013, 14 : 197 - 204
  • [7] Credit scoring by feature-weighted support vector machines
    Shi, Jian
    Zhang, Shu-you
    Qiu, Le-miao
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2013, 14 (03): : 197 - 204
  • [8] Least squares support vector machines ensemble models for credit scoring
    Zhou, Ligang
    Lai, Kin Keung
    Yu, Lean
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (01) : 127 - 133
  • [9] A hybrid credit scoring model based on clustering and support vector machines
    Huang, Wei
    Lai, Kin Keung
    Zhang, Jinlong
    [J]. PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON E-RISK MANAGEMENT (ICERM 2008), 2008, : 828 - +
  • [10] Support vector machines in ordinal classification: An application to corporate credit scoring
    Dikkers, H
    Rothkrantz, L
    [J]. NEURAL NETWORK WORLD, 2005, 15 (06) : 491 - 507