Incorporating Uncertainty and Reliability for Battery Temperature Prediction Using Machine Learning Methods

被引:1
|
作者
Sachan, Paarth [1 ]
Bharadwaj, Pallavi [1 ]
机构
[1] Indian Inst Technol Gandhinagar, Smart Power Elect Lab, Gandhinagar 382355, India
关键词
Lithium-ion batteries; Training; machine learning (ML); reliability; temperature prediction; uncertainty analysis; ION BATTERIES; MANAGEMENT; BEHAVIOR; ISSUES;
D O I
10.1109/JESTIE.2023.3327052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Temperature prediction of lithium-ion batteries is essential to prevent aging and degradation of batteries while ensuring safe and reliable operation.The use of simple machine learning methods for battery temperature prediction given current and voltage inputs is challenging due to battery cycling-induced aging. Since these methods do not generalize to the data outside the training domain, reliability issue arises in battery thermal management. As it is tough to train the battery temperature prediction models with all the possible data the battery is expected to see during real-world usage, uncertainty-aware models are needed. To address this, instead of point prediction, range prediction is performed using the conformal prediction method. The proposed method provides a band of temperature predictions for the input of current, voltage, and operational time. Results show high prediction accuracy with 79% of actual temperature measurements falling 100% within the narrow-predicted band. The remaining data points are seen within 0.4% of the predicted temperature bounds. The conformal method outperforms point prediction methods showing over 70% improvement in temperature prediction accuracy for pulsed and random walk battery cycling profiles, proving to be a precise and reliable battery temperature prediction tool under aging.
引用
收藏
页码:234 / 241
页数:8
相关论文
共 50 条
  • [41] Prediction of Cesarean Childbirth using Ensemble Machine Learning Methods
    Khan, Nafiz Imtiaz
    Mahmud, Tahasin
    Islam, Muhammad Nazrul
    Mustafina, Sumaiya Nuha
    22ND INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES (IIWAS2020), 2020, : 331 - 339
  • [42] Prediction of hydrogel swelling states using machine learning methods
    Wang, Yawen
    Wallmersperger, Thomas
    Ehrenhofer, Adrian
    ENGINEERING REPORTS, 2024, 6 (11)
  • [43] Jamming Prediction for Radar Signals Using Machine Learning Methods
    Lee, Gyeong-Hoon
    Jo, Jeil
    Park, Cheong Hee
    SECURITY AND COMMUNICATION NETWORKS, 2020, 2020
  • [44] Agricultural loan delinquency prediction using machine learning methods
    Chen, Jian
    Katchova, Ani L.
    Zhou, Chenxi
    INTERNATIONAL FOOD AND AGRIBUSINESS MANAGEMENT REVIEW, 2021, 24 (05): : 797 - 812
  • [45] Snow avalanche hazard prediction using machine learning methods
    Choubin, Bahram
    Borji, Moslem
    Mosavi, Amir
    Sajedi-Hosseini, Farzaneh
    Singh, Vijay P.
    Shamshirband, Shahaboddin
    JOURNAL OF HYDROLOGY, 2019, 577
  • [46] Prediction of Phage Virion Proteins Using Machine Learning Methods
    Barman, Ranjan Kumar
    Chakrabarti, Alok Kumar
    Dutta, Shanta
    MOLECULES, 2023, 28 (05):
  • [47] Demand Prediction using Machine Learning Methods and Stacked Generalization
    Tugay, Resul
    Oguducu, Sule Gunduz
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, TECHNOLOGY AND APPLICATIONS (DATA), 2017, : 216 - 222
  • [48] BOD5 Prediction Using machine learning methods
    Ooi, Kai Sheng
    Chen, Zhiyuan
    Poh, Phaik Eong
    Cui, Jian
    WATER SUPPLY, 2022, 22 (01) : 1168 - 1182
  • [49] Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods
    Tang, Xiaobo
    Li, Shixuan
    Tan, Mingliang
    Shi, Wenxuan
    JOURNAL OF FORECASTING, 2020, 39 (05) : 769 - 787
  • [50] Prediction of the bridge temperature using monitoring data and machine learning
    Wedel, Frederik
    Marx, Steffen
    BAUTECHNIK, 2020, 97 (12) : 836 - 845