Assessment strategy for bacterial lignin depolymerization: Kraft lignin and synthetic lignin bioconversion with Pseudomonas putida

被引:0
|
作者
Rouches E. [1 ]
Gómez-Alvarez H. [2 ]
Majira A. [1 ]
Martín-Moldes Z. [2 ]
Nogales J. [2 ]
Díaz E. [2 ]
Bugg T.D.H. [3 ]
Baumberger S. [1 ]
机构
[1] Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles
[2] Department of Microbial and Plant Biotechnology, Biological Research Centre-CSIC, Madrid
[3] Department of Chemistry, University of Warwick, Coventry
基金
英国生物技术与生命科学研究理事会;
关键词
Bacterial conversion; Depolymerization; HPSEC; Lignin; Phenolic metabolites;
D O I
10.1016/j.biteb.2021.100742
中图分类号
学科分类号
摘要
In order to better understand bacterial depolymerization of lignin, a new analytical approach was proposed using Pseudomonas putida KT2440 as delignifying bacterium and Escherichia coli as non-delignifying control. Two different types of lignins, technical Kraft lignin and synthetic dehydrogenopolymer (DHP), were submitted to a bioconversion kinetic study over 7 days. The concomitant analysis of the supernatant acid-precipitable lignin fraction and water-soluble extractives by high-performance size-exclusion chromatography (HPSEC) and gas chromatography – mass spectrometry (GC–MS) highlighted the specific action of P. putida towards these substrates, with the transitory formation of phenolic metabolites (dihydroferulic acid for Kraft lignins and dimers for DHP) and the prevention of Kraft lignin self-assemblying. In both cases lignin apparent depolymerization followed by repolymerization was observed. The analysis of the bacterial pellets indicated the time-increasing content of lignins associated to bacterial cells, which could account for the apparent structural changes observed with E. coli in the supernatant. © 2021
引用
收藏
相关论文
共 50 条
  • [21] Lignin Depolymerization to BTXs
    Luis Serrano
    Juan Antonio Cecilia
    Cristina García-Sancho
    Araceli García
    Topics in Current Chemistry, 2019, 377
  • [22] Mechanocatalytic depolymerization of lignin
    Tricker, Andrew
    Hebisch, Karoline
    Brittain, Alex
    Thomas, Valerie
    Realff, Matthew
    Sievers, Carsten
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [23] Numerical Simulation of Microwave-assisted Depolymerization of Kraft Lignin
    Zhenhao Ma
    Wenliang Wang
    Jiale Huang
    Yujun Ma
    Hui Miao
    Yishuai Fu
    Xiaoxiao Ren
    Paper and Biomaterials, 2021, 6 (04) : 47 - 53
  • [24] Oxidative Biphasic Depolymerization (BPD) of Kraft Lignin at Low pH
    Bjelic, Sasa
    Garbuio, Luca
    Arturi, Katarzyna R.
    van Bokhoven, Jeroen A.
    Jeschke, Gunnar
    Vogel, Frederic
    CHEMISTRYSELECT, 2018, 3 (41): : 11680 - 11686
  • [25] Base-catalyzed oxidative depolymerization of softwood kraft lignin
    Paananen, Hanna
    Eronen, Eemeli
    Makinen, Marko
    Janis, Janne
    Suvanto, Mika
    Pakkanen, Tuula T.
    INDUSTRIAL CROPS AND PRODUCTS, 2020, 152
  • [26] Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains
    Xu, Zhaoxian
    Qin, Ling
    Cai, Mufeng
    Hua, Wenbo
    Jin, Mingjie
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (14) : 14171 - 14181
  • [27] Lignin Depolymerization to BTXs
    Serrano, Luis
    Antonio Cecilia, Juan
    Garcia-Sancho, Cristina
    Garcia, Araceli
    TOPICS IN CURRENT CHEMISTRY, 2019, 377 (05)
  • [28] MICROORGANISMS FOR THE BIOCONVERSION OF LIGNIN
    HARTIG, C
    LORBEER, H
    MATERIAL UND ORGANISMEN, 1991, 26 (01): : 31 - 52
  • [29] Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains
    Zhaoxian Xu
    Ling Qin
    Mufeng Cai
    Wenbo Hua
    Mingjie Jin
    Environmental Science and Pollution Research, 2018, 25 : 14171 - 14181
  • [30] Current Status of Pseudomonas putida Engineering for Lignin Valorization
    Lee, Siseon
    Sohn, Jung-Hoon
    Bae, Jung-Hoon
    Kim, Sun Chang
    Sung, Bong Hyun
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2020, 25 (06) : 862 - 871