Traffic Speed Prediction in Merging Zone of Urban Expressway Based on Bidirectional Long Short-Term Memory Network

被引:0
|
作者
Xie, Jiming [1 ]
Xia, Yulan [1 ]
Qin, Yaqin [1 ]
Zhao, Rongda [2 ]
Liu, Bing [2 ]
Duan, Guozhong [2 ]
Chen, Jinhong [2 ]
机构
[1] Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming,650550, China
[2] Yunnan Communications Investment & Construction Group Co., Ltd., Kunming,650103, China
来源
Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University | 2024年 / 59卷 / 05期
关键词
Multiple linear regression;
D O I
10.3969/j.issn.0258-2724.20220005
中图分类号
学科分类号
摘要
Accurate prediction of microscopic traffic parameters in atypical complex scenes is a prerequisite to ensure stable operation of the intelligent vehicle infrastructure cooperative systems (IVICS). To solve the problem of vehicle speed distribution disorder and difficulty in prediction caused by bottleneck phenomenon during peak hours in the merging area under IVICS conditions, First, using the UAV video, the full-sample high-precision vehicle trajectory data of the intertwined area during peak hours are extracted from a wide-area view. Then, as bidirectional long short-term memory (Bi-LSTM) networks cost long time and affect the prediction performance of the model when training parameters are manually set, a BHO-Bi-LSTM (bayesian hyperparameter optimization bidirectional long short-term memory) integrated vehicle speed prediction model based on Bayesian hyperparameters optimization is proposed. Finally, the classical multiple linear regression model and Bi-LSTM model of vehicle speed prediction are constructed for comparison. The results show that the BHO-Bi-LSTM model outperforms other models, with a goodness-of-fit and rank correlation of 91.05% and 94.87%, respectively, and error mean, error standard deviation, mean square error, root mean square error, and normalized root mean square error of 0.0561, 0.4556, 0.2106, 0.4589, and 0.0785, respectively, which can overcome the disadvantage in prediction of complicated traffic speeds during peak hours. © 2024 Science Press. All rights reserved.
引用
收藏
页码:1235 / 1244
相关论文
共 50 条
  • [31] Bidirectional Long Short-Term Memory Network for Taxonomic Classification
    Soliman, Naglaa F.
    Abd Alhalem, Samia M.
    El-Shafai, Walid
    Abdulrahman, Salah Eldin S. E.
    Ismaiel, N.
    El-Rabaie, El-Sayed M.
    Algarni, Abeer D.
    Algarni, Fatimah
    Abd El-Samie, Fathi E.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (01): : 103 - 116
  • [32] Short-Term Traffic Flow Forecast Based on Parallel Long Short-Term Memory Neural Network
    Qiao, Songlin
    Sun, Rencheng
    Fan, Guangpeng
    Liu, Ji
    PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 253 - 257
  • [33] Multi-scale network traffic prediction based on attention mechanism and long short-term memory network
    Qian, Tang
    Liu, Yang
    Chao, Ma
    Yifei, Wei
    Journal of China Universities of Posts and Telecommunications, 2024, 31 (06): : 26 - 34
  • [34] Multi-scale network traffic prediction based on attention mechanism and long short-term memory network
    Tang Qian
    Yang Liu
    Ma Chao
    Wei Yifei
    The Journal of China Universities of Posts and Telecommunications, 2024, 31 (06) : 26 - 34+56
  • [35] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [36] Network Security Situation Prediction Based on Long Short-Term Memory Network
    Shang, Li
    Zhao, Wei
    Zhang, Jiaju
    Fu, Qiang
    Zhao, Qian
    Yang, Yang
    2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,
  • [37] Prediction of conotoxin type based on long short-term memory network
    Wang, Feng
    Chang, Shan
    Wei, Dashun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6700 - 6708
  • [38] Bi-directional Long Short Term Memory Neural Network for Short-Term Traffic Speed Prediction Using Gravitational Search Algorithm
    Naheliya, Bharti
    Redhu, Poonam
    Kumar, Kranti
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2024, 22 (02) : 316 - 327
  • [39] Prediction of Travel Purpose Based on the Long Short-Term Memory Network
    Zhang, Yan
    Zhao, De
    CICTP 2023: INNOVATION-EMPOWERED TECHNOLOGY FOR SUSTAINABLE, INTELLIGENT, DECARBONIZED, AND CONNECTED TRANSPORTATION, 2023, : 1029 - 1039
  • [40] Bi-directional Long Short Term Memory Neural Network for Short-Term Traffic Speed Prediction Using Gravitational Search Algorithm
    Naheliya, Bharti
    Redhu, Poonam
    Kumar, Kranti
    International Journal of Intelligent Transportation Systems Research, 2024,