Traffic Speed Prediction in Merging Zone of Urban Expressway Based on Bidirectional Long Short-Term Memory Network

被引:0
|
作者
Xie, Jiming [1 ]
Xia, Yulan [1 ]
Qin, Yaqin [1 ]
Zhao, Rongda [2 ]
Liu, Bing [2 ]
Duan, Guozhong [2 ]
Chen, Jinhong [2 ]
机构
[1] Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming,650550, China
[2] Yunnan Communications Investment & Construction Group Co., Ltd., Kunming,650103, China
来源
Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University | 2024年 / 59卷 / 05期
关键词
Multiple linear regression;
D O I
10.3969/j.issn.0258-2724.20220005
中图分类号
学科分类号
摘要
Accurate prediction of microscopic traffic parameters in atypical complex scenes is a prerequisite to ensure stable operation of the intelligent vehicle infrastructure cooperative systems (IVICS). To solve the problem of vehicle speed distribution disorder and difficulty in prediction caused by bottleneck phenomenon during peak hours in the merging area under IVICS conditions, First, using the UAV video, the full-sample high-precision vehicle trajectory data of the intertwined area during peak hours are extracted from a wide-area view. Then, as bidirectional long short-term memory (Bi-LSTM) networks cost long time and affect the prediction performance of the model when training parameters are manually set, a BHO-Bi-LSTM (bayesian hyperparameter optimization bidirectional long short-term memory) integrated vehicle speed prediction model based on Bayesian hyperparameters optimization is proposed. Finally, the classical multiple linear regression model and Bi-LSTM model of vehicle speed prediction are constructed for comparison. The results show that the BHO-Bi-LSTM model outperforms other models, with a goodness-of-fit and rank correlation of 91.05% and 94.87%, respectively, and error mean, error standard deviation, mean square error, root mean square error, and normalized root mean square error of 0.0561, 0.4556, 0.2106, 0.4589, and 0.0785, respectively, which can overcome the disadvantage in prediction of complicated traffic speeds during peak hours. © 2024 Science Press. All rights reserved.
引用
收藏
页码:1235 / 1244
相关论文
共 50 条
  • [1] Urban road speed prediction based on multisource feature bidirectional long short-term memory
    Xiong Z.
    Li H.
    Xiao S.
    Advances in Transportation Studies, 2021, 55 : 265 - 282
  • [2] Short-term traffic flow prediction for multi traffic states on urban expressway network
    Dong Chun-Jiao
    Shao Chun-Fu
    Zhuge Cheng-Xiang
    ACTA PHYSICA SINICA, 2012, 61 (01)
  • [3] Long Short-term Memory Neural Network for Network Traffic Prediction
    Zhuo, Qinzheng
    Li, Qianmu
    Yan, Han
    Qi, Yong
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [4] Urban Road Traffic Flow Prediction with Attention-Based Convolutional Bidirectional Long Short-Term Memory Networks
    Liu, Zhiquan
    Hu, Yao
    Ding, Xiangying
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (07) : 449 - 458
  • [5] Time series prediction method based on the bidirectional long short-term memory network
    Guan, Yepeng
    Su, Guangyao
    Sheng, Yi
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (03): : 103 - 112
  • [6] Detection of Abnormal Network Traffic Using Bidirectional Long Short-Term Memory
    Thi Thanh N.N.
    Nguyen Q.H.
    Computer Systems Science and Engineering, 2023, 46 (01): : 491 - 504
  • [7] Short-Term Traffic Flow Prediction Based on a K-Nearest Neighbor and Bidirectional Long Short-Term Memory Model
    Zhuang, Weiqing
    Cao, Yongbo
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [8] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Zhongda Tian
    Xiyan Yu
    Guokui Feng
    Earth Science Informatics, 2025, 18 (4)
  • [9] Short-Term Traffic Speed Prediction for an Urban Corridor
    Yao, Baozhen
    Chen, Chao
    Cao, Qingda
    Jin, Lu
    Zhang, Mingheng
    Zhu, Hanbing
    Yu, Bin
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2017, 32 (02) : 154 - 169
  • [10] Application of bidirectional long short-term memory network for prediction of cognitive age
    Wong, Shi-Bing
    Tsao, Yu
    Tsai, Wen-Hsin
    Wang, Tzong-Shi
    Wu, Hsin-Chi
    Wang, Syu-Siang
    SCIENTIFIC REPORTS, 2023, 13 (01):