PAN++: Towards efficient and accurate end-to-end spotting of arbitrarily-shaped text

被引:0
|
作者
National Key Lab for Novel Software Technology, Nanjing University [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
不详 [5 ]
不详 [6 ]
机构
来源
arXiv | 1600年
关键词
Arbitrary shape - End to end - End-to-end text spotting - Kernel representation - Natural scenes - Scene Text - Segmentation - Text detection - Text lines - Text recognition;
D O I
暂无
中图分类号
学科分类号
摘要
75
引用
收藏
相关论文
共 42 条
  • [21] TOWARDS END-TO-END SPEECH-TO-TEXT TRANSLATION WITH TWO-PASS DECODING
    Sung, Tzu-Wei
    Liu, Jun-You
    Lee, Hung-yi
    Lee, Lin-shan
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7175 - 7179
  • [22] PointLaneNet: Efficient end-to-end CNNs for Accurate Real-Time Lane Detection
    Chen, Zhenpeng
    Liu, Qianfei
    Lian, Chenfan
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2563 - 2568
  • [23] SText-DETR: End-to-End Arbitrary-Shaped Text Detection with Scalable Query in Transformer
    Liao, Pujin
    Wang, Zengfu
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 481 - 492
  • [24] Beyond OCR plus VQA: Towards end-to-end reading and reasoning for robust and accurate textvqa
    Zeng, Gangyan
    Zhang, Yuan
    Zhou, Yu
    Yang, Xiaomeng
    Jiang, Ning
    Zhao, Guoqing
    Wang, Weiping
    Yin, Xu-Cheng
    PATTERN RECOGNITION, 2023, 138
  • [25] ABCNet v2: Adaptive Bezier-Curve Network for Real-Time End-to-End Text Spotting
    Liu, Yuliang
    Shen, Chunhua
    Jin, Lianwen
    He, Tong
    Chen, Peng
    Liu, Chongyu
    Chen, Hao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8048 - 8064
  • [26] Towards an Improved Energy Efficient and End-to-End Secure Protocol for IoT Healthcare Applications
    Ahmad, Arshad
    Ullah, Ayaz
    Feng, Chong
    Khan, Muzammil
    Ashraf, Shahzad
    Adnan, Muhammad
    Nazir, Shah
    Khan, Habib Ullah
    SECURITY AND COMMUNICATION NETWORKS, 2020, 2020
  • [27] Efficient CRNN: Towards end-to-end low resource Urdu text recognition using depthwise separable convolutions and gated recurrent units
    Nasir, Tayyab
    Malik, Muhammad Kamran
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (01)
  • [28] MMU-OCR-21: Towards End-to-End Urdu Text Recognition Using Deep Learning
    Nasir, Tayyab
    Malik, Muhammad Kamran
    Shahzad, Khurram
    IEEE ACCESS, 2021, 9 : 124945 - 124962
  • [29] PageNet: Towards End-to-End Weakly Supervised Page-Level Handwritten Chinese Text Recognition
    Dezhi Peng
    Lianwen Jin
    Yuliang Liu
    Canjie Luo
    Songxuan Lai
    International Journal of Computer Vision, 2022, 130 : 2623 - 2645
  • [30] PageNet: Towards End-to-End Weakly Supervised Page-Level Handwritten Chinese Text Recognition
    Peng, Dezhi
    Jin, Lianwen
    Liu, Yuliang
    Luo, Canjie
    Lai, Songxuan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2623 - 2645