GALADRIEL: A facility for advancing engineering science relevant to rep-rated high energy density physics and inertial fusion energy experiments

被引:0
|
作者
Collins, G. W. [1 ]
McGuffey, C. [1 ]
Jaris, M. [1 ]
Vollmer, D. [1 ]
Dautt-Silva, A. [1 ]
Linsenmayer, E. [1 ]
Keller, A. [1 ]
Ramirez, J. C. [2 ]
Sammuli, B. [1 ]
Margo, M. [1 ]
Manuel, M. J. -E. [1 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Univ Calif San Diego, San Diego, CA 92093 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2024年 / 95卷 / 11期
关键词
LASER-MATTER INTERACTION; HIGH-REPETITION-RATE; WAVE-FRONT-SENSOR; ELECTRON ACCELERATION; KHZ; PW;
D O I
10.1063/5.0220160
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Many current and upcoming laser facilities used to study high-energy-density (HED) physics and inertial fusion energy (IFE) support operating at high rep-rates (HRRs) of similar to 0.1-10 Hz, yet many diagnostics, target-fielding strategies, and data storage methods cannot support this pace of operation. Therefore, established experimental paradigms must change for the community to progress toward rep-rated operation. To this end, we introduce the General Atomics LAboratory for Developing Rep-rated Instrumentation and Experiments with Lasers, or GALADRIEL, to serve as a test bed for developing and benchmarking the engineering science advancements required for HRR experiments. GALADRIEL was constructed from the ground up around a commercial 1 TW (similar to 25 mJ in similar to 25 fs at 800 nm) laser with diverse experimental applications in mind. Assembly of the basic framework of GALADRIEL concluded with commissioning shots generating similar to 1-4 MeV electrons via laser-wakefield acceleration (LWFA) using a nitrogen gas jet. Subsequent LWFA experiments operated at 1 Hz, utilized instrument feedback for optimization, and stored all data in a custom-built NoSQL database system. From this database called MORIA, or the MOngodb Repository for Information Archiving, data are retrievable via individual files or en masse by query requests defined by the user. GALADRIEL focuses on outstanding questions in engineering science, including targetry, diagnostics, data handling, environmental and materials studies, analysis and machine learning algorithm development, and feedback control systems. GALADRIEL fills a niche presently missing in the US-based user-facility community by providing a flexible experimental platform to address problems in engineering science relevant to rep-rated HED and IFE experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Recent fast electron energy transport experiments relevant to fast ignition inertial fusion
    Norreys, P. A.
    Scott, R. H. H.
    Lancaster, K. L.
    Green, J. S.
    Robinson, A. P. L.
    Sherlock, M.
    Evans, R. G.
    Haines, M. G.
    Kar, S.
    Zepf, M.
    Key, M. H.
    King, J.
    Ma, T.
    Yabuuchi, T.
    Wei, M. S.
    Beg, F. N.
    Nilson, P.
    Theobald, W.
    Stephens, R. B.
    Valente, J.
    Davies, J. R.
    Takeda, K.
    Azechi, H.
    Nakatsutsumi, M.
    Tanimoto, T.
    Kodama, R.
    Tanaka, K. A.
    NUCLEAR FUSION, 2009, 49 (10)
  • [32] A massive-ion beam driver for high-energy-density physics and future inertial fusion
    Takayama, Ken
    Adachi, Toshikazu
    Kawakubo, Tadamichi
    Okamura, Katsuya
    Yuri, Yosuke
    Hasegawa, Jun
    Horioka, Kazuhiko
    Kikuchi, Takashi
    Sasaki, Toru
    Takahashi, Kazumasa
    PHYSICS LETTERS A, 2020, 384 (27)
  • [33] Target technology development for the research of high energy density physics and inertial fusion at the RFNC-VNIIEF
    Izgorodin, V. M.
    Abzaev, F. M.
    Balyaev, A. P.
    Bessarab, A. V.
    Cherkesova, I. N.
    Chulkov, V. U.
    Fenoshin, D. Yu.
    Garanin, S. G.
    Gogolev, V. G.
    Golubinsky, A. G.
    Ignat'ev, Yu. V.
    Irinichev, D. A.
    Lachtikov, A. E.
    Morovov, A. P.
    Nazarov, V. V.
    Nikolaev, G. P.
    Pepelyaev, A. P.
    Pinegin, A. V.
    Rojz, I. M.
    Romaev, V. N.
    Solomatina, E. Yu.
    Vasin, M. G.
    Veselov, A. V.
    LASER AND PARTICLE BEAMS, 2009, 27 (04) : 657 - 680
  • [34] Collaborative technologies for distributed science: fusion energy and high-energy physics
    Schissel, D. P.
    Gottschalk, E. E.
    Greenwald, M. J.
    McCune, D.
    SCIDAC 2006: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2006, 46 : 102 - 106
  • [35] The role of quantum computing in advancing plasma physics simulations for fusion energy and high-energy
    Yang, Yifei
    FRONTIERS IN PHYSICS, 2025, 13
  • [36] High energy-density science on the national ignition facility
    Campbell, EM
    Cauble, R
    Remington, BA
    SHOCK COMPRESSION OF CONDENSED MATTER - 1997, 1998, 429 : 3 - 11
  • [37] Activities on heavy ion inertial fusion and beam-driven high energy density science in Japan
    Horioka, K.
    Kawamura, T.
    Nakajima, M.
    Kondo, K.
    Ogawa, M.
    Oguri, Y.
    Hasegawa, J.
    Kawata, S.
    Kikuchi, T.
    Sasaki, T.
    Murakami, M.
    Takayama, K.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 606 (1-2): : 1 - 5
  • [38] High Energy Density Physics on LULI2000 laser facility
    Koenig, M.
    Benuzzi-Mounaix, A.
    Ozaki, N.
    Ravasio, A.
    Vinci, T.
    Lepape, S.
    Tanaka, K.
    Riley, D.
    Shock Compression of Condensed Matter - 2005, Pts 1 and 2, 2006, 845 : 1421 - 1424
  • [39] High energy density physics from radiochemistry at the National Ignition Facility
    Hayes, Anna
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [40] Cylindrical liner Z-pinch experiments for fusion research and high-energy-density physics
    Burdiak, G. C.
    Lebedev, S. V.
    Suzuki-Vidal, F.
    Swadling, G. F.
    Bland, S. N.
    Niasse, N.
    Suttle, L.
    Bennet, M.
    Hare, J.
    Weinwurm, M.
    Rodriguez, R.
    Gil, J.
    Espinosa, G.
    JOURNAL OF PLASMA PHYSICS, 2015, 81