Single Image Super-Resolution by Residual Recovery Based on an Independent Deep Convolutional Network

被引:0
|
作者
Wang, Fei [1 ]
Gong, Mali [1 ]
机构
[1] State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, Beijing 100
关键词
39;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:43701 / 43710
相关论文
共 50 条
  • [31] Deep recurrent residual channel attention network for single image super-resolution
    Liu, Yepeng
    Yang, Dezhi
    Zhang, Fan
    Xie, Qingsong
    Zhang, Caiming
    VISUAL COMPUTER, 2024, 40 (05): : 3441 - 3456
  • [32] Deep recurrent residual channel attention network for single image super-resolution
    Yepeng Liu
    Dezhi Yang
    Fan Zhang
    Qingsong Xie
    Caiming Zhang
    The Visual Computer, 2024, 40 : 3441 - 3456
  • [33] Content-guided deep residual network for single image super-resolution
    Chen, Liangliang
    Kou, Qiqi
    Cheng, Deqiang
    Yao, Jie
    OPTIK, 2020, 202
  • [34] Multi-Branch Deep Residual Network for Single Image Super-Resolution
    Liu, Peng
    Hong, Ying
    Liu, Yan
    ALGORITHMS, 2018, 11 (10)
  • [35] Single Hyperspectral Image Super-resolution with Grouped Deep Recursive Residual Network
    Li, Yong
    Zhang, Lei
    Ding, Chen
    Wei, Wei
    Zhang, Yanning
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2018,
  • [36] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,
  • [37] FRISPEE: FRI-Based Single Image Super-Resolution with Deep Recursive Residual Network
    Wang, Renke
    Huangt, Jun-Jie
    Dragotti, Pier Luigi
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 479 - 483
  • [38] Image Super-Resolution Based on Dense Convolutional Network
    Li, Jie
    Zhou, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PT II, 2018, 11257 : 134 - 145
  • [39] Deep Residual Network in Wavelet Domain for Image Super-resolution
    Duan L.-J.
    Wu C.-L.
    En Q.
    Qiao Y.-H.
    Zhang Y.-D.
    Chen J.-C.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (04): : 941 - 953
  • [40] JPEG Image Super-Resolution via Deep Residual Network
    Xu, Fengchi
    Yan, Zifei
    Xiao, Gang
    Zhang, Kai
    Zuo, Wangmeng
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 472 - 483