A topological data analysis approach for detecting data poisoning attacks against machine learning based network intrusion detection systems

被引:0
|
作者
Monkam G.F. [1 ]
De Lucia M.J. [2 ]
Bastian N.D. [1 ]
机构
[1] Army Cyber Institute, Department of Electrical Engineering & Computer Science, United States Military Academy, West Point, 10996, NY
[2] Army Research Laboratory, U.S. Army Combat Capabilities Development Command, Aberdeen Proving Ground, 21005, MD
来源
Computers and Security | 2024年 / 144卷
关键词
Data poisoning detection; Machine learning security; Network security; Topological data analysis; Unsupervised learning;
D O I
10.1016/j.cose.2024.103929
中图分类号
学科分类号
摘要
Data poisoning attacks pose a significant security risk to network security software that utilizes machine learning (ML) for network intrusion detection. As network traffic continues to surge, ML becomes indispensable in detecting and characterizing malicious actors attempting to infiltrate computer networks. However, conventional ML assumes a benign environment, leaving room for adversaries to violate this assumption during the training phase. Detecting data poisoning attacks proves to be a challenging task, as attackers employ subtle alterations in the training data to create backdoors, trojans or triggers. Traditional techniques for addressing data poisoning attacks often focus only on enhancing ML model robustness rather than detecting poisoned data, necessitating the development of novel, more effective approaches. Hence, there is an urgent need to develop new methods for identifying poisoned data, ensuring the security of ML. We introduce a novel approach that harnesses the power of topological data analysis and unsupervised learning, enabling the early identification of poisoned data before training an ML model for network intrusion detection. Leveraging our approach, the extraction of topological features and subsequent application of clustering techniques leads to the creation of new clusters exclusively composed of poisoned data for removal prior to ML model training. © 2024
引用
收藏
相关论文
共 50 条
  • [31] A Defense Method against Poisoning Attacks on IoT Machine Learning Using Poisonous Data
    Chiba, Tomoki
    Sei, Yuichi
    Tahara, Yasuyuki
    Ohsuga, Akihiko
    2020 IEEE THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE 2020), 2020, : 100 - 107
  • [32] A Countermeasure Method Using Poisonous Data Against Poisoning Attacks on IoT Machine Learning
    Chiba, Tomoki
    Sei, Yuichi
    Tahara, Yasuyuki
    Ohsuga, Akihiko
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2021, 15 (02) : 215 - 240
  • [33] Model poisoning attacks against distributed machine learning systems
    Tomsett, Richard
    Chan, Kevin
    Chakraborty, Supriyo
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS, 2019, 11006
  • [34] Detecting Generic Network Intrusion Attacks using Tree-based Machine Learning Methods
    Alsariera, Yazan Ahmad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (02) : 597 - 603
  • [35] Data Poisoning Attacks against Autoencoder-based Anomaly Detection Models: a Robustness Analysis
    Bovenzi, Giampaolo
    Foggia, Alessio
    Santella, Salvatore
    Testa, Alessandro
    Persico, Valerio
    Pescape, Antonio
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5427 - 5432
  • [36] Adversarial Attacks Against Network Intrusion Detection in IoT Systems
    Qiu, Han
    Dong, Tian
    Zhang, Tianwei
    Lu, Jialiang
    Memmi, Gerard
    Qiu, Meikang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10327 - 10335
  • [37] NETWORK DATA INTRUSION DETECTION AND DATA FEATURE EXTRACTION OF ELECTROMECHANICAL FACILITIES FROM MACHINE LEARNING
    Xu, Ting
    Wang, Lijun
    Hu, Yanhong
    Tong, Xuming
    Scalable Computing, 2024, 25 (06): : 5171 - 5183
  • [38] Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach
    Chen, Sen
    Xue, Minhui
    Fan, Lingling
    Hao, Shuang
    Xu, Lihua
    Zhu, Haojin
    Li, Bo
    COMPUTERS & SECURITY, 2018, 73 : 326 - 344
  • [39] Machine Learning-Based Intrusion Detection for Rare-Class Network Attacks
    Yang, Yu
    Gu, Yuheng
    Yan, Yu
    ELECTRONICS, 2023, 12 (18)
  • [40] CCF Based System Framework In Federated Learning Against Data Poisoning Attacks
    Ahmed, Ibrahim M.
    Kashmoola, Manar Younis
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2023, 26 (07): : 973 - 981