Enhancing Machine Learning Approach Based on Nilsimsa Fingerprinting for Ransomware Detection in IoMT

被引:1
|
作者
Lucia Hernandez-Jaimes, Mireya [1 ]
Martinez-Cruz, Alfonso [1 ,2 ]
Alejandra Ramirez-Gutierrez, Kelsey [1 ,2 ]
Guevara-Martinez, Elizabeth [3 ]
机构
[1] Inst Nacl Astrofis Opt & Elect INAOE, Comp Sci Dept, Puebla 72840, Mexico
[2] Consejo Nacl Human Ciencia & Tecnol CONAHCYT, Mexico City 03940, Mexico
[3] Univ Anahuac Mexico, Engn Dept, Huixquilucan De Degollado 52786, Mexico
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Artificial intelligence; attack detection; Internet of Medical Things; machine learning; Nilsimsa fingerprinting; ransomware; security; HEALTH-CARE-SYSTEMS;
D O I
10.1109/ACCESS.2024.3480889
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The heterogeneous data generated within IoMT environments have presented significant challenges in ML-based attack detection approaches, where the lack of standardized features creates a barrier. Current ML-based attack detection methods rely on feature extraction techniques, often requiring specialized security expertise to analyze and identify the most relevant features for modeling ML algorithms, hindering widespread adoption in IoMT. This study presents a new approach for detecting ransomware-spreading behavior based on Nilsimsa fingerprinting and Machine Learning to represent network traffic and detect infected network flows. The performance of our proposal was evaluated using two IoMT datasets, ICE and CICIoMT2024. Our approach demonstrated better performance than current ML-based attack detection methods using network traffic features in terms of precision, F1-score, and training efficiency across both datasets. The Random Forest algorithm modeled with Nilsimsa fingerprints on the ICE dataset achieved 100% precision and 98.72% F1-score. Similarly, on the CICIoMT2024 dataset, our approach exhibited 99.44% precision and 98.59% F1-score.
引用
收藏
页码:153886 / 153897
页数:12
相关论文
共 50 条
  • [1] Enhancing Android Ransomware Detection Using an Ensemble Machine Learning Classifier
    Vali, Nasser
    Portillo-Dominguez, A. Omar
    Ayala-Rivera, Vanessa
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (08) : 562 - 576
  • [2] Machine learning based intrusion detection system for IoMT
    Kulshrestha, Priyesh
    Vijay Kumar, T. V.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (05) : 1802 - 1814
  • [3] Proposed Ransomware Detection Model Based on Machine Learning
    Gonza, Karen
    Torres, Juan
    Curioso, Mars
    Ticona, Wilfredo
    CYBERNETICS AND CONTROL THEORY IN SYSTEMS, VOL 2, CSOC 2024, 2024, 1119 : 287 - 299
  • [4] Enhancing File Entropy Analysis to Improve Machine Learning Detection Rate of Ransomware
    Hsu, Chia-Ming
    Yang, Chia-Cheng
    Cheng, Han-Hsuan
    Setiasabda, Paul E.
    Leu, Jenq-Shiou
    IEEE ACCESS, 2021, 9 : 138345 - 138351
  • [5] Machine Learning-Based Detection of Ransomware Using SDN
    Cusack, Greg
    Michel, Oliver
    Keller, Eric
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL WORKSHOP ON SECURITY IN SOFTWARE DEFINED NETWORKS & NETWORK FUNCTION VIRTUALIZATION (SDN-NFVSEC'18), 2018, : 1 - 6
  • [6] Ransomware detection based on machine learning using memory features
    Aljabri, Malak
    Alhaidari, Fahd
    Albuainain, Aminah
    Alrashidi, Samiyah
    Alansari, Jana
    Alqahtani, Wasmiyah
    Alshaya, Jana
    EGYPTIAN INFORMATICS JOURNAL, 2024, 25
  • [7] Authentic Learning of Machine Learning to Ransomware Detection and Prevention
    Faruk, Md Jobair Hossain
    Masum, Mohammad
    Shahriar, Hossain
    Qian, Kai
    Lo, Dan
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 442 - 443
  • [8] Machine Learning Algorithms and Frameworks in Ransomware Detection
    Smith, Daryle
    Khorsandroo, Sajad
    Roy, Kaushik
    IEEE ACCESS, 2022, 10 : 117597 - 117610
  • [9] Ransomware detection using machine learning algorithms
    Bae, Seong Il
    Lee, Gyu Bin
    Im, Eul Gyu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (18):
  • [10] Ransomware Classification and Detection With Machine Learning Algorithms
    Masum, Mohammad
    Faruk, Md Jobair Hossain
    Shahriar, Hossain
    Qian, Kai
    Lo, Dan
    Adnan, Muhaiminul Islam
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 316 - 322